Automatic landing control using particle swarm optimization

被引:0
|
作者
Juang, JG [1 ]
Lin, BS [1 ]
Chin, KC [1 ]
机构
[1] Natl Taiwan Ocean Univ, Dept Commun & Guidance Engn, Chilung 20224, Taiwan
来源
2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS | 2005年
关键词
particle swarm optimization; automatic landing system; fuzzy-neural controller;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an intelligent aircraft automatic landing controller that uses fuzzy-neural controller with particle swarm optimization to improve the performance of conventional automatic landing system. Control gains are selected by a parameter searching method called particle swarm theory. Comparisons on different control schemes are given. Simulation results show that the proposed automatic landing controller can successfully expand the safety envelope of an aircraft to include severe wind disturbance environments without using the conventional gain scheduling technique.
引用
收藏
页码:721 / 726
页数:6
相关论文
共 50 条
  • [1] Multimodal control parameter optimization for aircraft longitudinal automatic landing via the hybrid particle swarm-BFGS algorithm
    Bian, Qi
    Nener, Brett
    Li, Ting
    Wang, Xinmin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2019, 233 (12) : 4482 - 4491
  • [2] SOME PROBLEMS HANDLED BY PARTICLE SWARM OPTIMIZATION IN AUTOMATIC CONTROL
    Sandou, Guillaume
    ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011, : 315 - 319
  • [3] Particle swarm optimization using velocity control
    Nakagawa, Naoya
    Ishigame, Atsushi
    Yasuda, Keiichiro
    IEEJ Transactions on Electronics, Information and Systems, 2009, 129 (07) : 1331 - 1336+23
  • [4] Landing footprint computation based on particle swarm optimization
    Zhao, Jiang
    Zhou, Rui
    Binggong Xuebao/Acta Armamentarii, 2015, 36 (09): : 1680 - 1687
  • [5] An Automatic Stock Trading System using Particle Swarm Optimization
    Worasucheep, Chukiat
    Nuannimnoi, Sirapop
    Khamvichit, Ratchanon
    Attagonwantana, Papon
    2017 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), 2017, : 497 - 500
  • [6] Automatic Optic Disc Localization Using Particle Swarm Optimization Technique
    Jois, Subramanya S. P.
    Harsha, S.
    Kumar, J. R. Harish
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 1718 - 1722
  • [7] PARTICLE SWARM OPTIMIZATION FOR AUTOMATIC HARDNESS MEASUREMENT
    Hruz, Marek
    Siroky, Jan
    Manas, David
    CHEMICKE LISTY, 2012, 106 : S434 - S437
  • [8] Using Particle Swarm Optimization for PID Optimization for Altitude Control on a Quadrotor
    Connor, Jack
    Seyedmahmoudian, Mehdi
    Horan, Ben
    2017 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2017,
  • [9] A tool for automatic determination of model parameters using particle swarm optimization
    Nzale, Willy
    Ashourian, Hossein
    Mahseredjian, Jean
    Gras, Henry
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 219
  • [10] Research on Improved Train Automatic Control Strategy Based on Particle Swarm Optimization
    Li, Weidong
    Li, Xiaoyan
    Liu, Yang
    Hua, Chuntong
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 5867 - 5872