Holder Continuity of the Minimizer of an Obstacle Problem with Generalized Orlicz Growth

被引:6
作者
Karppinen, Arttu [1 ]
Lee, Mikyoung [2 ]
机构
[1] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
[2] Pusan Natl Univ, Dept Math, Busan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
ELLIPTIC-EQUATIONS; FULL C-1; C-ALPHA-REGULARITY; NONAUTONOMOUS FUNCTIONALS; REGULARITY; GRADIENT; INTEGRALS;
D O I
10.1093/imrn/rnab150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local C-0,C-alpha - and C-1,C-alpha-regularity for the local solution to an obstacle problem with nonstandard growth. These results cover as special cases standard, variable exponent, double phase, and Orlicz growth.
引用
收藏
页码:15313 / 15354
页数:42
相关论文
共 54 条
[1]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[2]   IMPROVED BOUNDS FOR SOLUTIONS OF phi-LAPLACIANS [J].
Arriagada, Waldo ;
Huentutripay, Jorge .
OPUSCULA MATHEMATICA, 2018, 38 (06) :765-777
[3]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[4]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[5]   SMOOTHNESS OF SOLUTIONS TO NONLINEAR VARIATIONAL INEQUALITIES [J].
BREZIS, H ;
KINDERLE.D .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (09) :831-844
[6]   POTENTIAL METHODS IN VARIATIONAL-INEQUALITIES [J].
CAFFARELLI, LA ;
KINDERLEHRER, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :285-295
[7]   Regularity results for a class of obstacle problems with p, q-growth conditions [J].
Caselli, M. ;
Eleuteri, M. ;
di Napoli, A. Passarelli .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
[8]   Removable sets in non-uniformly elliptic problems [J].
Chlebicka, Iwona ;
De Filippis, Cristiana .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (02) :619-649
[9]   ON THE OBSTACLE PROBLEM FOR QUASI-LINEAR ELLIPTIC-EQUATIONS OF P LAPLACIAN TYPE [J].
CHOE, HJ ;
LEWIS, JL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (03) :623-638
[10]   A REGULARITY THEORY FOR A GENERAL-CLASS OF QUASI-LINEAR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS AND OBSTACLE PROBLEMS [J].
CHOE, HJ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (04) :383-394