Pseudo S-asymptotically Bloch type periodic solutions to fractional integro-differential equations with Stepanov-like force terms

被引:14
作者
Chang, Yong-Kui [1 ]
Wei, Yanyan [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Shaanxi, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 02期
关键词
Stepanov-like S-asymptotically (omega; k)-Bloch periodic function; Stepanov-like (weighted)pseudo S-asymptotically (omega; k)-Bloch periodic functions; Fractional integro-differential equations; ANTIPERIODIC MILD SOLUTIONS; WEIGHTED PSEUDO; AUTOMORPHIC-FUNCTIONS; BOUNDED SOLUTIONS; EXISTENCE;
D O I
10.1007/s00033-022-01722-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we firstly present some notions of Stepanov-like S-asymptotically (omega, k)-Bloch periodic function, Stepanov-like (weighted) pseudo S-asymptotically (omega, k)-Bloch periodic functions and establish some basic properties of such functions. Finally, we investigate the existence and uniqueness of pseudo S-asymptotically (omega, k)-Bloch periodic solutions to a fractional integro-differential equation in Banach spaces with a Stepanov-like force function. The obtained results show that for each pseudo S-asymptotically (omega, k)-Bloch periodic input via Stepanov-like forcing disturbance, the output remains to be a bounded continuous mild solutions to the reference equation, which is also pseudo S-asymptotically (omega, k)-Bloch periodic.
引用
收藏
页数:17
相关论文
共 28 条
[11]   SOME NEW RESULTS ON BOUNDED SOLUTIONS TO A SEMILINEAR INTEGRO-DIFFERENTIAL EQUATION IN BANACH SPACES [J].
Chang, Yong-Kui ;
Wei, Xue-Yan ;
N'Guerekata, G. M. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2015, 27 (02) :153-178
[12]   Weighted pseudo almost automorphic solutions to a semilinear fractional differential equation with Stepanov-like weighted pseudo almost automorphic nonlinear term [J].
Chang, Yong-Kui ;
Zhang, Mei-Juan ;
Ponce, Rodrigo .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :158-168
[13]  
da Costa Sousa J.V., 2021, STEPANOV TYPE PSEUDO
[14]  
Hasler M.F., 2014, Nonlinear Studies, V21, P21
[15]   On S-asymptotically ω-periodic functions on Banach spaces and applications [J].
Henriquez, Hernan R. ;
Pierri, Michelle ;
Taboas, Placido .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) :1119-1130
[16]   Asymptotically periodic solutions of abstract differential equations [J].
Henriquez, Hernan R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 80 :135-149
[17]   EXISTENCE OF S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS FOR ABSTRACT NEUTRAL EQUATIONS [J].
Henriquez, Hernan R. ;
Pierri, Michelle ;
Taboas, Placido .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 78 (03) :365-382
[18]  
Kostic M., 2017, Funct. Anal. Approx. Comput, V9, P27
[19]   Existence of anti-periodic mild solutions to semilinear nonautonomous evolution equations [J].
Liu, Jinghuai ;
Song, Xiaoqiu ;
Zhang, Litao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) :295-306
[20]   Anti-periodic solutions to nonlinear evolution equations [J].
Liu Zhenhai .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) :2026-2033