Extreme Variability in Irminger Sea Winter Heat Loss Revealed by Ocean Observatories Initiative Mooring and the ERA5 Reanalysis

被引:37
作者
Josey, S. A. [1 ]
de Jong, M. F. [2 ,3 ]
Oltmanns, M. [4 ]
Moore, G. K. [5 ,6 ]
Weller, R. A. [7 ]
机构
[1] Natl Oceanog Ctr, Southampton, Hants, England
[2] Royal Netherlands Inst Sea Res NIOZ, Texel, Netherlands
[3] Univ Utrecht, Texel, Netherlands
[4] GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany
[5] Univ Toronto, Dept Phys, Toronto, ON, Canada
[6] Univ Toronto, Dept Chem & Phys Sci, Mississauga, ON, Canada
[7] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
基金
美国国家科学基金会; 欧盟地平线“2020”; 英国自然环境研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Irminger Sea; air-sea interaction; surface heat flux; atmospheric modes; surface flux mooring; atmospheric reanalysis; NORTH-ATLANTIC; CAPE-FAREWELL; LABRADOR SEA; GREENLAND; WINDS; LAYER; EAST;
D O I
10.1029/2018GL080956
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Ground-breaking measurements from the ocean observatories initiative Irminger Sea surface mooring (60 degrees N, 39 degrees 30W) are presented that provide the first in situ characterization of multiwinter surface heat exchange at a high latitude North Atlantic site. They reveal strong variability (December 2014 net heat loss nearly 50% greater than December 2015) due primarily to variations in frequency of intense short timescale (1-3days) forcing. Combining the observations with the new high resolution European Centre for Medium Range Weather Forecasts Reanalysis 5 (ERA5) atmospheric reanalysis, the main source of multiwinter variability is shown to be changes in the frequency of Greenland tip jets (present on 15days in December 2014 and 3days in December 2015) that can result in hourly mean heat loss exceeding 800W/m(2). Furthermore, a new picture for atmospheric mode influence on Irminger Sea heat loss is developed whereby strongly positive North Atlantic Oscillation conditions favor increased losses only when not outweighed by the East Atlantic Pattern. Plain Language Summary The ocean loses heat to the atmosphere in the far northern Atlantic. This is important as heat loss influences how much deep water is formed and the strength of the Atlantic circulation. However, the amount of heat lost is poorly known because measurements are difficult to obtain in the icy, high wind conditions of the subpolar seas. New measurements from a state-of-the-art mooring in the Irminger Sea east of Greenland are presented here. They are the first multiwinter measurements obtained at such high latitudes and reveal strong variability in ocean heat loss. This variability is due to changes between winters in the number of intense heat loss events. The events are caused by the mountainous Greenland terrain which focuses winds into narrow, very strong jets over the ocean. We develop a new picture which explains how changing atmospheric circulation influences the number of events and hence the ocean heat loss.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 35 条
[1]   Influence of the Icelandic Low latitude on the frequency of Greenland tip jet events: Implications for Irminger Sea convection [J].
Bakalian, F. ;
Hameed, S. ;
Pickart, R. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2007, 112 (C4)
[2]   Deep Convection in the Irminger Sea Observed with a Dense Mooring Array [J].
de Jong, M. Femke ;
Oltmanns, Marilena ;
Karstensen, Johannes ;
de Steur, Laura .
OCEANOGRAPHY, 2018, 31 (01) :50-59
[3]   Convective mixing in the central Irminger Sea: 2002-2010 [J].
de Jong, M. Femke ;
van Aken, Hendrik M. ;
Vage, Kjetil ;
Pickart, Robert S. .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2012, 63 :36-51
[4]   Strong winter cooling over the Irminger Sea in winter 2014-2015, exceptional deep convection, and the emergence of anomalously low SST [J].
de Jong, Marieke Femke ;
de Steur, Laura .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (13) :7106-7113
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]   Flow response to large-scale topography: the Greenland tip jet [J].
Doyle, JD ;
Shapiro, MA .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1999, 51 (05) :728-748
[7]   Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave [J].
Duchez, Aurelie ;
Frajka-Williams, Eleanor ;
Josey, Simon A. ;
Evans, Dafydd G. ;
Grist, Jeremy P. ;
Marsh, Robert ;
McCarthy, Gerard D. ;
Sinha, Bablu ;
Berry, David I. ;
Hirschi, Joel J-M .
ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (07)
[8]   Winter Atmospheric Buoyancy Forcing and Oceanic Response during Strong Wind Events around Southeastern Greenland in the Regional Arctic System Model (RASM) for 1990-2010 [J].
DuVivier, Alice K. ;
Cassano, John J. ;
Craig, Anthony ;
Hamman, Joseph ;
Maslowski, Wieslaw ;
Nijssen, Bart ;
Osinski, Robert ;
Roberts, Andrew .
JOURNAL OF CLIMATE, 2016, 29 (03) :975-994
[9]   Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior [J].
Frob, F. ;
Olsen, A. ;
Vage, K. ;
Moore, G. W. K. ;
Yashayaev, I. ;
Jeansson, E. ;
Rajasakaren, B. .
NATURE COMMUNICATIONS, 2016, 7
[10]   Annular mode changes in the CMIP5 simulations [J].
Gillett, N. P. ;
Fyfe, J. C. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (06) :1189-1193