Ethylene-Responsive Element-Binding Factor 5, ERF5, Is Involved in Chitin-Induced Innate Immunity Response

被引:132
作者
Son, Geon Hui [1 ,2 ]
Wan, Jinrong [1 ]
Kim, Hye Jin [2 ]
Xuan Canh Nguyen [2 ]
Chung, Woo Sik [2 ]
Hong, Jong Chan [1 ,2 ]
Stacey, Gary [1 ]
机构
[1] Univ Missouri, Div Plant Sci, Columbia, MO 65211 USA
[2] Gyeongsang Natl Univ, Plant Mol Biol & Biotechnol Res Ctr, Div Appl Life Sci, BK21 Program, Jinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
WRKY TRANSCRIPTION FACTOR; SIGNALING PATHWAYS; INTERACTION NETWORKS; DEFENSE-RESPONSE; GENE-EXPRESSION; CROSS-TALK; ATTED-II; ARABIDOPSIS; RESISTANCE; PROTEIN;
D O I
10.1094/MPMI-06-11-0165
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Our recent work demonstrated that chitin treatment modulated the expression of 118 transcription factor (TF) genes in Arabidopsis. To investigate the potential roles of these TF in chitin signaling and plant defense, we initiated an interaction study among these TF proteins, as well as two chitin-activated mitogen-activated protein kinases (MPK3 and MPK6), using a yeast two-hybrid system. This study revealed interactions among the following proteins: three ethylene-responsive element-binding factors (ERF), five WRKY transcription factors, one scarecrow-like (SCL), and the two MPK, in addition to many other interactions, reflecting a complex TF interaction network. Most of these interactions were subsequently validated by other methods, such as pull-down and in planta bimolecular fluorescence complementation assays. The key node ERF5 was shown to interact with multiple proteins in the network, such as ERF6, ERF8, and SCL13, as well as MPK3 and MPK6. Interestingly, ERF5 appeared to negatively regulate chitin signaling and plant defense against the fungal pathogen Alternaria brassicicola and positively regulate salicylic acid signaling and plant defense against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Therefore, ERF5 may play an important role in plant innate immunity, likely through coordinating chitin and other defense pathways in plants in response to different pathogens.
引用
收藏
页码:48 / 60
页数:13
相关论文
共 72 条
[1]   Role of DREB transcription factors in abiotic and biotic stress tolerance in plants [J].
Agarwal, Pradeep K. ;
Agarwal, Parinita ;
Reddy, M. K. ;
Sopory, Sudhir K. .
PLANT CELL REPORTS, 2006, 25 (12) :1263-1274
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis [J].
Alonso, JM ;
Stepanova, AN ;
Solano, R ;
Wisman, E ;
Ferrari, S ;
Ausubel, FM ;
Ecker, JR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2992-2997
[4]   Choose your partners: dimerization in eukaryotic transcription factors [J].
Amoutzias, Grigoris D. ;
Robertson, David L. ;
Van de Peer, Yves ;
Oliver, Stephen G. .
TRENDS IN BIOCHEMICAL SCIENCES, 2008, 33 (05) :220-229
[5]   The MAP kinase substrate MKS1 is a regulator of plant defense responses [J].
Andreasson, E ;
Jenkins, T ;
Brodersen, P ;
Thorgrimsen, S ;
Petersen, NHT ;
Zhu, SJ ;
Qiu, JL ;
Micheelsen, P ;
Rocher, A ;
Petersen, M ;
Newman, MA ;
Nielsen, HB ;
Hirt, H ;
Somssich, I ;
Mattsson, O ;
Mundy, J .
EMBO JOURNAL, 2005, 24 (14) :2579-2589
[6]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[7]   Interaction networks for systems biology [J].
Bader, Samuel ;
Kuehner, Sebastian ;
Gavin, Anne-Claude .
FEBS LETTERS, 2008, 582 (08) :1220-1224
[8]   IMPa-4, an Arabidopsis Importin α Isoform, Is Preferentially Involved in Agrobacterium-Mediated Plant Transformation [J].
Bhattacharjee, Saikat ;
Lee, Lan-Ying ;
Oltmanns, Heiko ;
Cao, Hongbin ;
Veena ;
Cuperus, Joshua ;
Gelvin, Stanton B. .
PLANT CELL, 2008, 20 (10) :2661-2680
[9]   WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1 [J].
Bhattarai, Kishor K. ;
Atamian, Hagop S. ;
Kaloshian, Isgouhi ;
Eulgem, Thomas .
PLANT JOURNAL, 2010, 63 (02) :229-240
[10]   The role of ethylene in host-pathoven interactions [J].
Broekaert, Willem F. ;
Delaure, Stijn L. ;
De Bolle, Miguel F. C. ;
Cammue, Bruno P. A. .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2006, 44 :393-416