Mathematical Modeling of pH-Based Potentiometric Biosensor Using Akbari-Ganji Method

被引:20
作者
Shanthi, R. [1 ]
Devi, M. Chitra [2 ]
Abukhaled, Marwan [3 ]
Lyons, Michael E. G. [4 ,5 ]
Rajendran, L. [1 ]
机构
[1] AMET Deemed Univ, Dept Math, Chennai, Tamil Nadu, India
[2] Anna Univ, Univ Coll Engn, Dept Math, Dindigul, India
[3] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
[4] Univ Dublin, Trinity Coll Dublin, Sch Chem, Dublin 2, Ireland
[5] Univ Dublin, Trinity Coll Dublin, AMBER Natl Ctr, Dublin 2, Ireland
关键词
Mathematical modeling; reaction-diffusion; pH-based potentiometric biosensor; Akbari-Ganji method; nonlinear equations; MICHAELIS-MENTEN KINETICS; ORGANOPHOSPHATE; PESTICIDES; PHOSPHOTRIESTERASE;
D O I
10.20964/2022.03.48
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study discusses a mathematical model for the steady-state reaction of a pH-based potentiometric biosensor immobilizing organophosphorus hydrolase (OPH). The model that combines diffusion and enzymatic reaction processes in the membrane is a system of five interconnected nonlinear reaction-diffusion equations. Approximate analytical expressions for the substrate concentration (organophosphorus pesticides (OPs)) and products are derived for all possible values of Thiele modulus and buffer concentration using the Akbari-Ganji method. In addition, analytical expressions for the current, sensitivity, and resistance of pH-based potentiometric biosensors are also derived. The obtained analytical results are convergent on the prescribed domain and firmly match the fourth-order RungeKutta numerical simulations.
引用
收藏
页数:13
相关论文
共 44 条
[1]  
Abukhaled M., 2021, Int. J. Appl. Comp. Math., V7, P1, DOI DOI 10.1007/S40819-021-00974-Y
[2]   Efficient numerical treatment of a conductive-radiative fin with temperature-dependent thermal conductivity and surface emissivity [J].
Abukhaled, Marwan ;
Khuri, S. A. .
INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2020, 21 (04) :159-168
[3]   Variational Iteration Method for Nonlinear Singular Two-Point Boundary Value Problems Arising in Human Physiology [J].
Abukhaled, Marwan .
JOURNAL OF MATHEMATICS, 2013, 2013
[4]   Solving nonlinear differential equations of Vanderpol, Rayleigh and Duffing by AGM [J].
Akbari M.R. ;
Ganji D.D. ;
Majidian A. ;
Ahmadi A.R. .
Frontiers of Mechanical Engineering, 2014, 9 (2) :177-190
[5]  
Akbari M. R., 2014, Dev. Appl. Oceanic. Eng, V3, P22
[6]  
Baronas R, 2010, SPRINGER SER CHEM SE, V9, P1, DOI 10.1007/978-90-481-3243-0
[7]   PH-BASED ENZYME POTENTIOMETRIC SENSORS .1. THEORY [J].
CARAS, SD ;
JANATA, J ;
SAUPE, D ;
SCHMITT, K .
ANALYTICAL CHEMISTRY, 1985, 57 (09) :1917-1920
[8]   Amperometric biosensors in an uncompetitive inhibition processes: a complete theoretical and numerical analysis [J].
Devi, M. Chitra ;
Pirabaharan, P. ;
Rajendran, L. ;
Abukhaled, Marwan .
REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 133 (02) :655-668
[9]  
DUMAS DP, 1989, BIOTECHNOL APPL BIOC, V11, P235
[10]  
DUMAS DP, 1989, J BIOL CHEM, V264, P19659