Ground state cooling of an ultracoherent electromechanical system

被引:49
作者
Seis, Yannick [1 ,2 ]
Capelle, Thibault [1 ,2 ]
Langman, Eric [1 ,2 ]
Saarinen, Sampo [1 ,2 ]
Planz, Eric [1 ,2 ]
Schliesser, Albert [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Hybrid Quantum Networks Hy Q, Copenhagen, Denmark
基金
瑞士国家科学基金会; 欧洲研究理事会; 新加坡国家研究基金会; 欧盟地平线“2020”;
关键词
MICROWAVE; MOTION; RESONATORS; QUBIT;
D O I
10.1038/s41467-022-29115-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cavity electromechanics relies on parametric coupling between microwave and mechanical modes to manipulate the mechanical quantum state, and provide a coherent interface between different parts of hybrid quantum systems. High coherence of the mechanical mode is of key importance in such applications, in order to protect the quantum states it hosts from thermal decoherence. Here, we introduce an electromechanical system based around a softclamped mechanical resonator with an extremely high Q-factor (>10(9)) held at very low (30 mK) temperatures. This ultracoherent mechanical resonator is capacitively coupled to a microwave mode, strong enough to enable ground-state-cooling of the mechanics ((n) over bar (min) = 0:76 +/- 0:16). This paves the way towards exploiting the extremely long coherence times (t(coh) > 100 ms) offered by such systems for quantum information processing and state conversion.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/nphys2911, 10.1038/NPHYS2911]
[2]   Resolving the energy levels of a nanomechanical oscillator [J].
Arrangoiz-Arriola, Patricio ;
Wollack, E. Alex ;
Wang, Zhaoyou ;
Pechal, Marek ;
Jiang, Wentao ;
McKenna, Timothy P. ;
Witmer, Jeremy D. ;
Van Laer, Raphael ;
Safavi-Naeini, Amir H. .
NATURE, 2019, 571 (7766) :537-+
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[5]   Models of wave-function collapse, underlying theories, and experimental tests [J].
Bassi, Angelo ;
Lochan, Kinjalk ;
Satin, Seema ;
Singh, Tejinder P. ;
Ulbricht, Hendrik .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :471-527
[6]  
Beccari A., 2022, NAT PHYS
[7]  
Bereyhi M. J., 2022, HIERARCHICAL TENSILE
[8]   Phonon-mediated quantum state transfer and remote qubit entanglement [J].
Bienfait, A. ;
Satzinger, K. J. ;
Zhong, Y. P. ;
Chang, H. -S. ;
Chou, M. -H. ;
Conner, C. R. ;
Dumur, E. ;
Grebel, J. ;
Peairs, G. A. ;
Povey, R. G. ;
Cleland, A. N. .
SCIENCE, 2019, 364 (6438) :368-+
[9]   Mechanical quantum sensing in the search for dark matter [J].
Carney, D. ;
Krnjaic, G. ;
Moore, D. C. ;
Regal, C. A. ;
Afek, G. ;
Bhave, S. ;
Brubaker, B. ;
Corbitt, T. ;
Cripe, J. ;
Crisosto, N. ;
Geraci, A. ;
Ghosh, S. ;
Harris, J. G. E. ;
Hook, A. ;
Kolb, E. W. ;
Kunjummen, J. ;
Lang, R. F. ;
Li, T. ;
Lin, T. ;
Liu, Z. ;
Lykken, J. ;
Magrini, L. ;
Manley, J. ;
Matsumoto, N. ;
Monte, A. ;
Monteiro, F. ;
Purdy, T. ;
Riedel, C. J. ;
Singh, R. ;
Singh, S. ;
Sinha, K. ;
Taylor, J. M. ;
Qin, J. ;
Wilson, D. J. ;
Zhao, Y. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (02)
[10]   Soft-Clamped Phononic Dimers for Mechanical Sensing and Transduction [J].
Catalini, Letizia ;
Tsaturyan, Yeghishe ;
Schliesser, Albert .
PHYSICAL REVIEW APPLIED, 2020, 14 (01)