Correlated Binary Data for Machine Learning

被引:0
作者
Llobet Turro, Marti [1 ]
Cabrera-Bean, Margarita [2 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona, Spain
来源
29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021) | 2021年
关键词
Data sets; Unsupervised Ensemble Learning; Bernoulli correlated patterns; CLASSIFICATION;
D O I
10.23919/EUSIPCO54536.2021.9616346
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Data sets containing instances that are assigned values by an ensemble of annotators of unknown accuracy are becoming increasingly common. Binary, potentially correlated data are frequent in a number of disciplines, and thus eligible to be exploited by ensemble meta-learners. A prior key step is testing the meta-learners with synthetic data sets featuring realistic correlation patterns, which is the main scope of this work. To achieve this goal, two challenges are faced: (i) finding out a new correlated pattern to model Bernoulli random variables, and (ii) obtaining a process to generate realistic synthetic data sets. A comparative analysis and performance results are provided for two methods of artificial data generation. The methods are also tested using two state-of-the-art binary ensemble meta-learners that consider inter-classifier dependencies.
引用
收藏
页码:1411 / 1415
页数:5
相关论文
共 12 条
[1]   Unsupervised Ensemble Classification With Correlated Decision Agents [J].
Cabrera-Bean, Margarita ;
Pages-Zamora, Alba ;
Diaz-Vilor, Caries .
IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (07) :1085-1089
[2]   Multivariate Bernoulli distribution [J].
Dai, Bin ;
Ding, Shilin ;
Wahba, Grace .
BERNOULLI, 2013, 19 (04) :1465-1483
[3]  
DAWID AP, 1979, J ROY STAT SOC B MET, V41, P1
[4]   A pathway-based classification of human breast cancer [J].
Gatza, Michael L. ;
Lucas, Joseph E. ;
Barry, William T. ;
Kim, Jong Wook ;
Wang, Quanli ;
Crawford, Matthew D. ;
Datto, Michael B. ;
Kelley, Michael ;
Mathey-Prevot, Bernard ;
Potti, Anil ;
Nevins, Joseph R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (15) :6994-6999
[5]   Correlated binomial models and correlation structures [J].
Hisakado, Masato ;
Kitsukawa, Kenji ;
Mori, Shintaro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (50) :15365-15378
[6]  
Jaffe A, 2016, JMLR WORKSH CONF PRO, V51, P351
[7]   Picking ChIP-seq peak detectors for analyzing chromatin modification experiments [J].
Micsinai, Mariann ;
Parisi, Fabio ;
Strino, Francesco ;
Asp, Patrik ;
Dynlacht, Brian D. ;
Kluger, Yuval .
NUCLEIC ACIDS RESEARCH, 2012, 40 (09) :e70
[8]   Correlated binomial regression models [J].
Pires, Rubiane M. ;
Diniz, Carlos A. R. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (08) :2513-2525
[9]  
Raykar VC, 2010, J MACH LEARN RES, V11, P1297
[10]  
Snow R., 2008, P C EMP METH NAT LAN, P254