EXISTENCE OF SOLUTIONS TO SUPERLINEAR P-LAPLACE EQUATIONS WITHOUT AMBROSETTI-RABINOWIZT CONDITION

被引:0
作者
Duong Minh Duc [1 ]
机构
[1] Vietnam Natl Univ, Univ Sci, 227 Nguyen Van Cu Q5, Hochiminh City, Vietnam
关键词
Nemytskii operators; p-Laplacian; multiplicity of solutions; mountain-pass theorem; ELLIPTIC-EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of non-trivial weak solutions in W-0(1,p)(Omega) of the super-linear Dirichlet problem -div(vertical bar del u vertical bar(p-2)del u) = f(x, u) in Omega, u = 0 on partial derivative Omega, where f satisfies the condition vertical bar f(x, t)vertical bar <= vertical bar omega(x)t vertical bar(r-1) + b(x) for all(x, t) is an element of Omega x R, where r is an element of(p,N-p/N-p), b is an element of Lr/r-1(Omega) and vertical bar omega vertical bar(r-1) mmay be non-integrable on Omega.
引用
收藏
页数:10
相关论文
共 18 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 2001, ELECTRON J DIFFER EQ
[3]  
[Anonymous], SOBOLEV SPACES
[4]  
Appell J.A., 2008, NONLINEAR SUPERPOSIT
[5]  
Brezis H., 2011, FUNCTIONAL ANAL SOBO
[6]  
De Figueiredo D. G., 1989, LECT EK VAR PRINC AP
[7]   Mountain pass solutions to equations of p-Laplacian type [J].
De Nápoli, P ;
Mariani, MC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (07) :1205-1219
[8]  
Dinca G., 2001, Portugaliae Mathematica. Nova Serie, V58, P339
[9]   Nonuniformly elliptic equations of p-Laplacian type [J].
Duc, DM ;
Vu, NT .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (08) :1483-1495
[10]  
DUC DM, 1989, J LOND MATH SOC, V40, P420