Enhanced heat conduction in molten salt containing nanoparticles: Insights from molecular dynamics

被引:55
作者
Li, Zhao [1 ]
Cui, Liu [1 ]
Li, Baorang [1 ]
Du, Xiaoze [2 ]
机构
[1] North China Elect Power Univ, Minist Educ, Key Lab Power Stn Energy Transfer Convers & Syst, Beijing 102206, Peoples R China
[2] Lanzhou Univ Technol, Sch Energy & Power Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar salt; Nanoparticle; Thermal conductivity; Potential energy; Molecular dynamics; EFFECTIVE THERMAL-CONDUCTIVITY; LIQUID-SOLID INTERFACE; BROWNIAN-MOTION; NANOFLUIDS; SIMULATION; EQUILIBRIUM; PARTICLES; MODEL;
D O I
10.1016/j.ijheatmasstransfer.2020.119578
中图分类号
O414.1 [热力学];
学科分类号
摘要
The addition of nanoparticles is a promising strategy to manipulate the thermal transport property of molten salt, which is an important thermal energy storage material for concentrating solar power. The molecular dynamics simulations have been conducted to investigate the mechanisms of enhanced heat transfer in binary molten salt based nanocomposite with nonmetallic nanoparticle SiO2. The results show that the thermal conductivity of molten salt is increased by introducing nanoparticles, which is up to 54.5% increase under 10%wt. loading of SiO2 nanoparticle. Moreover, the thermal conductivity increases as the nanoparticle loading rises. To elucidate the underlying mechanisms for the enhancement of thermal conductivity, the mean square displacement and size effect of nanoparticle, the structure and density of the ordered layer were analyzed. It is found that the possible mechanisms, including the Brownian motion of nanoparticle, the micro-convection of base fluid, and the ordered layer at the solid-liquid interface, for enhanced heat transfer proposed in previous literatures cannot explain the change in thermal conductivity of molten salt. The increment in thermal conductivity can be attributed to the improved probability and frequency of ion collision, as evidenced by the change of potential energy. The present findings verify the applicability for the molten salt-nanoparticle composite, moreover, highlight the correlation between the potential energy and the enhancement of thermal conductivity, which may provide guidance on the chosen of materials and design of the molten salt-nanoparticle composite. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 48 条
[1]   An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications [J].
Arthur, Owen ;
Karim, M. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 55 :739-755
[2]   Thermal-physical properties of nanoparticle-seeded nitrate molten salts [J].
Awad, Afrah ;
Navarro, Helena ;
Ding, Yulong ;
Wen, Dongsheng .
RENEWABLE ENERGY, 2018, 120 :275-288
[3]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[4]  
Chen G., 2005, Nanoscale Energy Transport And Conversion: A Parallel Treatment Of Electrons, Molecules, Phonons, And Photons
[5]   Investigation of enhanced thermal properties of Cu-Ar nanofluids by reverse non equilibrium molecular dynamics method [J].
Chen, Juhui ;
Han, Kun ;
Wang, Shuai ;
Liu, Xiaogang ;
Wang, Peng ;
Chen, Jiyuan .
POWDER TECHNOLOGY, 2019, 356 :559-565
[6]   Shear deformation-induced anisotropic thermal conductivity of graphene [J].
Cui, Liu ;
Shi, Sanqiang ;
Wei, Gaosheng ;
Du, Xiaoze .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (02) :951-957
[7]   Heat conduction in coaxial nanocables of Au nanowire core and carbon nanotube shell: A molecular dynamics simulation [J].
Cui, Liu ;
Feng, Yanhui ;
Tang, Jingjing ;
Tan, Peng ;
Zhang, Xinxin .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 99 :64-70
[8]   Molecular dynamics simulation on the microstructure of absorption layer at the liquid-solid interface in nanofluids [J].
Cui, Wenzheng ;
Shen, Zhaojie ;
Yang, Jianguo ;
Wu, Shaohua .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 71 :75-85
[9]   Influence of nanoparticle properties on the thermal conductivity of nanofluids by molecular dynamics simulation [J].
Cui, Wenzheng ;
Shen, Zhaojie ;
Yang, Jianguo ;
Wu, Shaohua ;
Bai, Minli .
RSC ADVANCES, 2014, 4 (98) :55580-55589
[10]   On the Influencing Factors and Strengthening Mechanism for Thermal Conductivity of Nanofluids by Molecular Dynamics Simulation [J].
Cui, Wenzheng ;
Bai, Minli ;
Lv, Jizu ;
Li, Guojie ;
Li, Xiaojie .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (23) :13568-13575