Differential antimicrobial activity of silver nanoparticles to bacteria Bacillus subtilis and Escherichia coli, and toxicity to crop plant Zea mays and beneficial B. subtilis-inoculated Z. mays

被引:15
作者
Doody, Michael A. [1 ]
Wang, Dengjun [1 ]
Bais, Harsh P. [1 ,2 ]
Jin, Yan [1 ]
机构
[1] Univ Delaware, Dept Plant & Soil Sci, Newark, DE 19716 USA
[2] Delaware Biotechnol Inst, Newark, DE 19711 USA
关键词
Citrate-coated silver nanoparticles; Bacillus subtilis; Escherichia coli; Zea mays; Plant-bacteria symbiotic interaction; ANTIBACTERIAL ACTIVITY; SURFACE-CHARGE; NANOMATERIALS; RELEASE; GROWTH; ACCUMULATION; DISSOLUTION; AGGREGATION; RECRUITMENT; GENERATION;
D O I
10.1007/s11051-016-3602-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As silver nanoparticles (AgNPs) have become increasingly used in commercial antimicrobial agents and industrial and military products, concerns are increasing over their broad environmental and health impacts and risks because they are finding their way to the environment. This study was designed to quantify the antimicrobial activity of citrate-coated AgNPs (c-AgNPs; transmission electron microscope size of 44.9 +/- 7.2 nm) to two species of bacteria, i.e., Gram-positive Bacillus subtilis and Gram-negative Escherichia coli, and toxicity to a major crop plant Zea mays and beneficial bacteria-inoculated plant (i.e., B. subtilis-inoculated Z. mays symbiont). Our results reveal that the exposure of c-AgNPs significantly inhibited bacteria growth and altered their growth kinetics. Z. mays experienced significant sublethal effects including reduced root length and biomass, and hyper-accumulation of Ag in roots. The beneficial interactions between B. subtilis and Z. mays were weakened as well because both species suffered sublethal effects. Potential mechanisms leading to the antimicrobial activity and toxicity of c-AgNPs to the bacteria, plant, and plant-bacteria symbiont examined in this study were discussed. Taken together, our findings advance the current knowledge of AgNPs antimicrobial property or toxicity to bacteria, crop plant, and beneficial plant-bacteria symbiotic interaction, which is a critical component for NPs environmental impact and risk assessment.
引用
收藏
页数:19
相关论文
共 68 条
[11]   Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil [J].
El-Temsah, Yehia Sayed ;
Joner, Erik J. .
ENVIRONMENTAL TOXICOLOGY, 2012, 27 (01) :42-49
[12]  
Elimelech M., 1998, Particle deposition aggregation, measurement, modeling and simulation
[13]   Silver nanoparticles: Behaviour and effects in the aquatic environment [J].
Fabrega, Julia ;
Luoma, Samuel N. ;
Tyler, Charles R. ;
Galloway, Tamara S. ;
Lead, Jamie R. .
ENVIRONMENT INTERNATIONAL, 2011, 37 (02) :517-531
[14]  
Feng QL, 2000, J BIOMED MATER RES, V52, P662, DOI 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO
[15]  
2-3
[16]   Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana [J].
Geisler-Lee, Jane ;
Wang, Qiang ;
Yao, Ying ;
Zhang, Wen ;
Geisler, Matt ;
Li, Kungang ;
Huang, Ying ;
Chen, Yongsheng ;
Kolmakov, Andrei ;
Ma, Xingmao .
NANOTOXICOLOGY, 2013, 7 (03) :323-337
[17]   Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions [J].
Gottschalk, Fadri ;
Sonderer, Tobias ;
Scholz, Roland W. ;
Nowack, Bernd .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (24) :9216-9222
[18]   Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil [J].
Guo, Junkang ;
Chi, Jie .
PLANT AND SOIL, 2014, 375 (1-2) :205-214
[19]  
Huang CP, 2010, ENVIRONANOTECHNOLOGY, P1, DOI 10.1016/B978-0-08-054820-3.00001-0
[20]   Organic acids in the rhizosphere - a critical review [J].
Jones, DL .
PLANT AND SOIL, 1998, 205 (01) :25-44