Stellar equilibrium configurations of white dwarfs in the f (R, T) gravity

被引:88
|
作者
Carvalho, G. A. [1 ]
Lobato, R. V. [1 ,2 ,3 ]
Moraes, P. H. R. S. [1 ]
Arbanil, Jose D. V. [4 ]
Otoniel, E. [5 ]
Marinho, R. M., Jr. [1 ]
Malheiro, M. [1 ]
机构
[1] Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Sapienza Univ Roma, Dipartimento Fis, Ple Aldo Moro 5, I-00185 Rome, Italy
[3] ICRANet, Pzza Repubbl 10, I-65122 Pescara, Italy
[4] Univ Privada Norte, Dept Ciencias, Ave Alfredo Mendiola 6062 Urbanizac Olivos, Lima, Peru
[5] Univ Fed Cariri, Inst Formacao Prof, BR-63260000 Brejo Santo, CE, Brazil
来源
EUROPEAN PHYSICAL JOURNAL C | 2017年 / 77卷 / 12期
基金
巴西圣保罗研究基金会;
关键词
DYNAMICAL INSTABILITY; MASS-DISTRIBUTION; DENSITY; HISTORY; MATTER; STARS; MODEL;
D O I
10.1140/epjc/s10052-017-5413-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, namely, f (R, T) gravity, for which R and T stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form f (R, T) = R + 2 lambda T, with lambda being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter lambda are derived. More massive and larger white dwarfs are found for negative values of lambda when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of f (R, T) theory for massive white dwarfs is the increase of the radius in comparison with GR and also f (R) results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for lambda, namely, lambda > -3 x 10(-4).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Stellar equilibrium configurations of white dwarfs in the f(R, T) gravity
    G. A. Carvalho
    R. V. Lobato
    P. H. R. S. Moraes
    José D. V. Arbañil
    E. Otoniel
    R. M. Marinho
    M. Malheiro
    The European Physical Journal C, 2017, 77
  • [2] Stellar equilibrium configurations of compact stars in f (R, T) theory of gravity
    Moraes, P. H. R. S.
    Arbanil, Jose D. V.
    Malheiro, M.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (06):
  • [3] Equilibrium configurations of anisotropic polytropes in f(R, T) gravity
    M. Sharif
    Aisha Siddiqa
    The European Physical Journal Plus, 133
  • [4] Equilibrium configurations of anisotropic polytropes in f(R, T) gravity
    Sharif, M.
    Siddiqa, Aisha
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (06):
  • [5] Stellar configurations in f(R) theories of gravity
    Henttunen, K.
    Multamaki, T.
    Vilja, I.
    PHYSICAL REVIEW D, 2008, 77 (02):
  • [6] Massive white dwarfs in f (R, Lm) gravity
    Lobato, R. V.
    Carvalho, G. A.
    Kelkar, N. G.
    Nowakowski, M.
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (06):
  • [7] Equilibrium configurations of relativistic white dwarfs
    Bertone, G
    Ruffini, R
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2000, 115 (7-9): : 935 - 945
  • [8] Hydrostatic equilibrium and stellar structure in f(R) gravity
    Capozziello, S.
    De Laurentis, M.
    Odintsov, S. D.
    Stabile, A.
    PHYSICAL REVIEW D, 2011, 83 (06)
  • [9] Constraining Newtonian stellar configurations in f (R) theories of gravity
    Multamaki, T.
    Vilja, I.
    PHYSICS LETTERS B, 2008, 659 (05) : 843 - 846
  • [10] Stability criterion for white dwarfs in Palatini f(R) gravity
    Sarmah, Lupamudra
    Kalita, Surajit
    Wojnar, Aneta
    PHYSICAL REVIEW D, 2022, 105 (02)