Periodic travelling waves in chain of nonlinear oscillators linearly coupled

被引:0
作者
Iooss, G
Kirchgässner, K
机构
[1] UNSA, CNRS, UMR 6618, Inst Univ France,INLN, F-06560 Valbonne, France
[2] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 327卷 / 09期
关键词
D O I
10.1016/S0764-4442(99)80118-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider travelling waves in a chain of nonlinear oscillators, linearly coupled to their nearest neighbors. We show that the "small" solutions are ruled by a reversible O.D.E. anti, Sor a not too large coupling, we show that the "small" solutions constitute a one parameter family of periodic solutions, bifurcating from 0. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:855 / 860
页数:6
相关论文
共 6 条
[1]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[2]   EXISTENCE THEOREM FOR SOLITARY WAVES ON LATTICES [J].
FRIESECKE, G ;
WATTIS, JAD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (02) :391-418
[3]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
[4]   WAVE-SOLUTIONS OF REVERSIBLE-SYSTEMS AND APPLICATIONS [J].
KIRCHGASSNER, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 45 (01) :113-127
[5]   PROOF OF EXISTENCE OF BREATHERS FOR TIME-REVERSIBLE OR HAMILTONIAN NETWORKS OF WEAKLY COUPLED OSCILLATORS [J].
MACKAY, RS ;
AUBRY, S .
NONLINEARITY, 1994, 7 (06) :1623-1643
[6]  
VANDERBAUWHEDE A, 1992, DYNAMICS REPORTED, V1, P125, DOI 10.1007/978-3-642-61243-5_4