ne-dimensional Anderson model with dichotomic correlation

被引:8
|
作者
Kaya, T. [1 ]
机构
[1] Yildiz Tech Univ, Dept Phys, TR-34210 Istanbul, Davutpasa, Turkey
来源
EUROPEAN PHYSICAL JOURNAL B | 2007年 / 60卷 / 03期
关键词
D O I
10.1140/epjb/e2007-00356-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A one-dimensional diagonal tight binding electronic system with dichotomic correlated disorder is investigated. The correlation of random potential exponentially decays with distance and also with the dichotomic correlation parameter lambda. Using a appropriate approximation, an analytical transmission coefficient expression is obtained. The obtained analytical expression is then tested against the result of the direct numerical computation of the average transmission coefficient < T > for the Anderson model, by changing the system parameters. In the thermodynamic limit the transmission coefficient relation indicates the absence of localization-delocalization transition, which is entirely consistent with numerical predictions.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 50 条
  • [21] PHASE RANDOMNESS IN THE ONE-DIMENSIONAL ANDERSON MODEL
    STONE, AD
    ALLAN, DC
    JOANNOPOULOS, JD
    PHYSICAL REVIEW B, 1983, 27 (02): : 836 - 843
  • [22] Localized entanglement in one-dimensional Anderson model
    Li, HB
    Wang, XG
    MODERN PHYSICS LETTERS B, 2005, 19 (11): : 517 - 527
  • [23] Ferromagnetism in the two-dimensional periodic Anderson model
    Batista, CD
    Bonca, J
    Gubernatis, JE
    PHYSICAL REVIEW B, 2001, 63 (18)
  • [24] Entanglement dynamics in the three-dimensional Anderson model
    Zhao, Yang
    Feng, Dingyi
    Hu, Yongbo
    Guo, Shutong
    Sirker, Jesko
    PHYSICAL REVIEW B, 2020, 102 (19)
  • [25] EXPONENTIAL LOCALIZATION IN THE ONE-DIMENSIONAL ANDERSON MODEL
    KIMBALL, JC
    PHYSICAL REVIEW B, 1981, 24 (06): : 2964 - 2971
  • [26] Classical representation of the one-dimensional Anderson model
    Izrailev, FM
    Ruffo, S
    Tessieri, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5263 - 5270
  • [27] THE ONE-DIMENSIONAL ANDERSON MODEL - A SUPERSYMMETRIC TREATMENT
    MARKOS, P
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (14): : 2647 - 2664
  • [28] Spectral properties of three-dimensional Anderson model
    Suntajs, J.
    Prosen, T.
    Vidmar, L.
    ANNALS OF PHYSICS, 2021, 435
  • [29] Dichotomic ratchet in a two-dimensional corrugated channel
    Kalinay, Pavol
    Slanina, Frantisek
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [30] ELECTRON CORRELATION IN THE PERIODIC ANDERSON MODEL IN D = +INFINITY DIMENSIONS
    OHKAWA, FJ
    PHYSICAL REVIEW B, 1992, 46 (14) : 9016 - 9026