Rapidly predicting Kohn-Sham total energy using data-centric AI

被引:14
作者
Kurban, Hasan [1 ,2 ]
Kurban, Mustafa [3 ]
Dalkilic, Mehmet M. [2 ]
机构
[1] San Jose State Univ, Appl Data Sci Dept, San Jose, CA 95192 USA
[2] Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA
[3] Kirsehir Ahi Evran Univ, Dept Elect & Elect Engn, TR-40100 Kirsehir, Turkey
关键词
REGRESSION; ADSORPTION; MODELS;
D O I
10.1038/s41598-022-18366-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting material properties by solving the Kohn-Sham (KS) equation, which is the basis of modern computational approaches to electronic structures, has provided significant improvements in materials sciences. Despite its contributions, both DFT and DFTB calculations are limited by the number of electrons and atoms that translate into increasingly longer run-times. In this work we introduce a novel, data-centric machine learning framework that is used to rapidly and accurately predicate the KS total energy of anatase TiO2 nanoparticles (NPs) at different temperatures using only a small amount of theoretical data. The proposed framework that we call co-modeling eliminates the need for experimental data and is general enough to be used over any NPs to determine electronic structure and, consequently, more efficiently study physical and chemical properties. We include a web service to demonstrate the effectiveness of our approach.
引用
收藏
页数:14
相关论文
共 103 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]   Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries [J].
Allam, Omar ;
Cho, Byung Woo ;
Kim, Ki Chul ;
Jang, Seung Soon .
RSC ADVANCES, 2018, 8 (69) :39414-39420
[3]  
[Anonymous], 1960, Mathematical methods for digital computers
[4]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[5]   Selecting machine learning models for metallic nanoparticles [J].
Barnard, Amanda S. ;
Opletal, George .
NANO FUTURES, 2020, 4 (03) :1-12
[6]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[7]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[8]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[9]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[10]   Random forest in remote sensing: A review of applications and future directions [J].
Belgiu, Mariana ;
Dragut, Lucian .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 114 :24-31