Functions and Application of the AP2/ERF Transcription Factor Family in Crop Improvement

被引:321
作者
Xu, Zhao-Shi [1 ]
Chen, Ming [1 ]
Li, Lian-Cheng [1 ]
Ma, You-Zhi [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Minist Agr,Key Lab Crop Genet & Breeding, Beijing 100081, Peoples R China
关键词
AP2/ERF; gene regulation; signal pathway; stress tolerance; transgenic plant; RESPONSIVE GENE-EXPRESSION; ELEMENT-BINDING PROTEIN; AP2 DOMAIN PROTEIN; ABSCISIC-ACID; DNA-BINDING; ETHYLENE-RESPONSE; GCC BOX; DISEASE RESISTANCE; SALT TOLERANCE; ARABIDOPSIS-THALIANA;
D O I
10.1111/j.1744-7909.2011.01062.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants have acquired sophisticated stress response systems to adapt to changing environments. It is important to understand plants' stress response mechanisms in the effort to improve crop productivity under stressful conditions. The AP2/ERF transcription factors are known to regulate diverse processes of plant development and stress responses. In this study, the molecular characteristics and biological functions of AP2/ERFs in a variety of plant species were analyzed. AP2/ERFs, especially those in DREB and ERF subfamilies, are ideal candidates for crop improvement because their overexpression enhances tolerances to drought, salt, freezing, as well as resistances to multiple diseases in the transgenic plants. The comprehensive analysis of physiological functions is useful in elucidating the biological roles of AP2/ERF family genes in gene interaction, pathway regulation, and defense response under stress environments, which should provide new opportunities for the crop tolerance engineering.
引用
收藏
页码:570 / 585
页数:16
相关论文
共 142 条
[1]   Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. [J].
Abogadallah, Gaber M. ;
Nada, Reham M. ;
Malinowski, Robert ;
Quick, Paul .
PLANTA, 2011, 233 (06) :1265-1276
[2]   Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity [J].
Agarwal, Parinita ;
Agarwal, Pradeep K. ;
Nair, Suresh ;
Sopory, S. K. ;
Reddy, M. K. .
MOLECULAR GENETICS AND GENOMICS, 2007, 277 (02) :189-198
[3]   Role of DREB transcription factors in abiotic and biotic stress tolerance in plants [J].
Agarwal, Pradeep K. ;
Agarwal, Parinita ;
Reddy, M. K. ;
Sopory, Sudhir K. .
PLANT CELL REPORTS, 2006, 25 (12) :1263-1274
[4]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[5]   Salicylic Acid and its Function in Plant Immunity [J].
An, Chuanfu ;
Mou, Zhonglin .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2011, 53 (06) :412-428
[6]   Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J].
Anderson, JP ;
Badruzsaufari, E ;
Schenk, PM ;
Manners, JM ;
Desmond, OJ ;
Ehlert, C ;
Maclean, DJ ;
Ebert, PR ;
Kazan, K .
PLANT CELL, 2004, 16 (12) :3460-3479
[7]   AP2-ERF transcription factors mediate nod factor-dependent mt ENOD11 activation in root hairs via a novel cis-regulatory motif [J].
Andriankaja, Andry ;
Boisson-Demier, Aurelien ;
Frances, Lisa ;
Sauviac, Laurent ;
Jauneau, Alain ;
Barker, David G. ;
de Carvalho-Niebel, Fernanda .
PLANT CELL, 2007, 19 (09) :2866-2885
[8]   Inducing drought tolerance in plants: Recent advances [J].
Ashraf, M. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (01) :169-183
[9]   Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions [J].
Bhatnagar-Mathur, Pooja ;
Devi, M. Jyostna ;
Reddy, D. Srinivas ;
Lavanya, M. ;
Vadez, Vincent ;
Serraj, R. ;
Yamaguchi-Shinozaki, K. ;
Sharma, Kiran K. .
PLANT CELL REPORTS, 2007, 26 (12) :2071-2082
[10]   Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress [J].
Bhatnagar-Mathur, Pooja ;
Devi, M. Jyostna ;
Vadez, Vincent ;
Sharma, Kiran K. .
JOURNAL OF PLANT PHYSIOLOGY, 2009, 166 (11) :1207-1217