Diagnosing Malaria Patients with Plasmodium falciparum and vivax Using Deep Learning for Thick Smear Images

被引:25
作者
Kassim, Yasmin M. [1 ]
Yang, Feng [1 ]
Yu, Hang [1 ]
Maude, Richard J. [2 ,3 ,4 ]
Jaeger, Stefan [1 ]
机构
[1] Natl Lib Med, NIH, Bethesda, MD 20894 USA
[2] Mahidol Univ, Fac Trop Med, Mahidol Oxford Trop Med Res Unit, Bangkok 10400, Thailand
[3] Univ Oxford, Ctr Trop Med & Global Hlth, Nuffield Dept Med, Oxford OX3 7LG, England
[4] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA
基金
美国国家卫生研究院; 英国惠康基金;
关键词
malaria; computer-aided diagnosis; biomedical image analysis; deep learning; ResNet50; Mask R-CNN; Plasmodium parasite; Plasmodium falciparum; Plasmodium vivax; BLOOD SMEARS;
D O I
10.3390/diagnostics11111994
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We propose a new framework, PlasmodiumVF-Net, to analyze thick smear microscopy images for a malaria diagnosis on both image and patient-level. Our framework detects whether a patient is infected, and in case of a malarial infection, reports whether the patient is infected by Plasmodium falciparum or Plasmodium vivax. PlasmodiumVF-Net first detects candidates for Plasmodium parasites using a Mask Regional-Convolutional Neural Network (Mask R-CNN), filters out false positives using a ResNet50 classifier, and then follows a new approach to recognize parasite species based on a score obtained from the number of detected patches and their aggregated probabilities for all of the patient images. Reporting a patient-level decision is highly challenging, and therefore reported less often in the literature, due to the small size of detected parasites, the similarity to staining artifacts, the similarity of species in different development stages, and illumination or color variations on patient-level. We use a manually annotated dataset consisting of 350 patients, with about 6000 images, which we make publicly available together with this manuscript. Our framework achieves an overall accuracy above 90% on image and patient-level.
引用
收藏
页数:19
相关论文
共 47 条
[1]   Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models [J].
Abdurahman, Fetulhak ;
Fante, Kinde Anlay ;
Aliy, Mohammed .
BMC BIOINFORMATICS, 2021, 22 (01)
[2]   Two-Stage Mask-RCNN Approach for Detecting and Segmenting the Optic Nerve Head, Optic Disc, and Optic Cup in Fundus Images [J].
Almubarak, Haidar ;
Bazi, Yakoub ;
Alajlan, Naif .
APPLIED SCIENCES-BASEL, 2020, 10 (11)
[3]  
[Anonymous], Malaria in the Amazon: Guidelines for the Use of Synthetic
[4]  
Chakrabortya K., 2015, J HLTH MED INF, V6, P645, DOI [10.4172/2157-7420.1000179, DOI 10.4172/2157-7420.1000179]
[5]   Real-time Malaria Parasite Screening in Thick Blood Smears for Low-Resource Setting [J].
Chibuta, Samson ;
Acar, Aybar C. .
JOURNAL OF DIGITAL IMAGING, 2020, 33 (03) :763-775
[6]   Automatic knee meniscus tear detection and orientation classification with Mask-RCNN [J].
Couteaux, V ;
Si-Mohamed, S. ;
Nempont, O. ;
Lefevre, T. ;
Popoff, A. ;
Pizaine, G. ;
Villain, N. ;
Bloch, I ;
Cotten, A. ;
Boussel, L. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2019, 100 (04) :235-242
[7]   Computational microscopic imaging for malaria parasite detection: a systematic review [J].
Das, D. K. ;
Mukherjee, R. ;
Chakraborty, C. .
JOURNAL OF MICROSCOPY, 2015, 260 (01) :1-19
[8]  
Dave IR, 2017, 2017 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), P561, DOI 10.1109/SPIN.2017.8050013
[9]  
Davenport Thomas, 2019, Future Healthc J, V6, P94, DOI 10.7861/futurehosp.6-2-94
[10]  
Delahunt CB, 2015, PROCEEDINGS OF THE FIFTH IEEE GLOBAL HUMANITARIAN TECHNOLOGY CONFERENCE GHTC 2015, P393, DOI 10.1109/GHTC.2015.7344002