Direct writing of metal nanoparticle films inside sealed microfluidic channels

被引:27
作者
Castellana, ET [1 ]
Kataoka, S [1 ]
Albertorio, F [1 ]
Cremer, PS [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
关键词
D O I
10.1021/ac051288j
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Herein we demonstrate the ability to pattern Ag nanoparticle films of arbitrary geometry inside sealed PDMS/ TiO2/glass microfluidic devices. The technique can be employed with aqueous solutions at room temperature under mild conditions. A 6 nm TiO2 film is first deposited onto a planar Pyrex or silica substrate, which is subsequently bonded to a PDMS mold. UV fight is then exposed through the device to reduce Ag+ from an aqueous solution to create a monolayer-thick film of Ag nanoparticles. We demonstrate that this on-chip deposition method can be exploited in a parallel fashion to synthesize nanoparticles of varying size by independently controlling the solution conditions in each microchannel in which the film is formed. The film morphology was checked by atomic force microscopy, and the results showed that the size of the nanoparticles was sensitive to solution pH. Additionally, we illustrate the ability to biofunctionalize these films with ligands for protein capture. The results indicated that this could be done with good discrimination between addressed locations and background. The technique appears to be quite general, and films of Pd, Cu, and An could also be patterned.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 43 条
[1]   Ellipsometric characterization and influence of relative humidity on TiO2 layers optical properties [J].
Alvarez-Herrero, A ;
Fort, AJ ;
Guerrero, H ;
Bernabeu, E .
THIN SOLID FILMS, 1999, 349 (1-2) :212-219
[2]   SENSITIVITY ENHANCEMENT OF OPTICAL IMMUNOSENSORS BY THE USE OF A SURFACE-PLASMON RESONANCE FLUOROIMMUNOASSAY [J].
ATTRIDGE, JW ;
DANIELS, PB ;
DEACON, JK ;
ROBINSON, GA ;
DAVIDSON, GP .
BIOSENSORS & BIOELECTRONICS, 1991, 6 (03) :201-214
[3]   Multiphoton laser direct writing of two-dimensional silver structures [J].
Baldacchini, T ;
Pons, AC ;
Pons, J ;
LaFratta, CN ;
Fourkas, JT ;
Sun, Y ;
Naughton, MJ .
OPTICS EXPRESS, 2005, 13 (04) :1275-1280
[4]   Plastic microfluidic devices modified with polyelectrolyte multilayers [J].
Barker, SLR ;
Tarlov, MJ ;
Canavan, H ;
Hickman, JJ ;
Locascio, LE .
ANALYTICAL CHEMISTRY, 2000, 72 (20) :4899-4903
[5]   Formation of gradients of proteins on surfaces with microfluidic networks [J].
Caelen, I ;
Bernard, A ;
Juncker, D ;
Michel, B ;
Heinzelmann, H ;
Delamarche, E .
LANGMUIR, 2000, 16 (24) :9125-9130
[6]   High-sensitivity miniaturized immunoassays for tumor necrosis factor a using microfluidic systems [J].
Cesaro-Tadic, S ;
Dernick, G ;
Juncker, D ;
Buurman, G ;
Kropshofer, H ;
Michel, B ;
Fattinger, C ;
Delamarche, E .
LAB ON A CHIP, 2004, 4 (06) :563-569
[7]   FEMTOSECOND DIFFUSE-REFLECTANCE SPECTROSCOPY OF TIO2 POWDERS [J].
COLOMBO, DP ;
BOWMAN, RM .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (30) :11752-11756
[8]   Microfluidic networks for chemical patterning of substrate: Design and application to bioassays [J].
Delamarche, E ;
Bernard, A ;
Schmid, H ;
Bietsch, A ;
Michel, B ;
Biebuyck, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (03) :500-508
[9]   Trialkylsilane monolayers covalently attached to silicon surfaces: Wettability studies indicating that molecular topography contributes to contact angle hysteresis [J].
Fadeev, AY ;
McCarthy, TJ .
LANGMUIR, 1999, 15 (11) :3759-3766
[10]   A new route to covalently attached monolayers: Reaction of hydridosilanes with titanium and other metal surfaces [J].
Fadeev, AY ;
McCarthy, TJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (51) :12184-12185