On cubic non-Cayley vertex-transitive graphs

被引:7
作者
Kutnar, Klavdija [1 ]
Marusic, Dragan [1 ,2 ]
Zhang, Cui [1 ]
机构
[1] Univ Primorska, Koper 6000, Slovenia
[2] Univ Ljubljana, Ljubljana 1000, Slovenia
关键词
vertex-transitive graph; non-Cayley graph; automorphism group; GENERALIZED PETERSEN GRAPHS; AUTOMORPHISM-GROUPS; SYMMETRICAL GRAPHS; ORDER; PRODUCT; PRIME; COVERINGS; TWICE;
D O I
10.1002/jgt.20573
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1983, the second author [D. Marusic, Ars Combinatoria 16B (1983), 297302] asked for which positive integers n there exists a non-Cayley vertex-transitive graph on n vertices. (The term non-Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265269] asked to determine the smallest valency (n) among valencies of non-Cayley vertex-transitive graphs of order n. As cycles are clearly Cayley graphs, n >= 3 for any non-Cayley number n.
引用
收藏
页码:77 / 95
页数:19
相关论文
共 45 条
[1]   A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS [J].
ALSPACH, B ;
PARSONS, TD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02) :307-318
[2]  
Alspach B., 1979, ANN NY ACAD SCI, V319, P19
[3]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[4]  
BOUWER IZ, 1988, FOSTER CENSUS
[5]   Tetravalent edge-transitive Cayley graphs with odd number of vertices [J].
Cai, HL ;
Zai, PL ;
Hua, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) :164-181
[6]  
Conder M., 2002, J. Comb. Math. Comb. Comput., V40, P41
[7]   Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer [J].
Conder, MDE ;
Walker, CG .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (01) :29-38
[8]   Cubic symmetric graphs of order a small number times a prime or a prime square [J].
Feng, Yan-Quan ;
Kwak, Jin Ho .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (04) :627-646
[9]   Cubic symmetric graphs of order twice an odd prime-power [J].
Feng, Yan-Quan ;
Kwak, Jin Ho .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 81 :153-164
[10]   Automorphism groups of tetravalent Cayley graphs on regular p-groups [J].
Feng, YQ ;
Xu, MY .
DISCRETE MATHEMATICS, 2005, 305 (1-3) :354-360