The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries

被引:38
作者
Blanga, R. [1 ]
Goor, M. [1 ]
Burstein, L. [2 ]
Rosenberg, Yu. [2 ]
Gladkich, A. [2 ]
Logvinuk, D. [1 ]
Shechtman, I. [1 ]
Golodnitsky, D. [1 ,2 ]
机构
[1] Tel Aviv Univ, Sch Chem, IL-6997801 Tel Aviv, Israel
[2] Tel Aviv Univ, Appl Mat Res Ctr, IL-6997801 Tel Aviv, Israel
关键词
SULFUR BATTERIES; CATHODE; PERFORMANCE;
D O I
10.1007/s10008-016-3303-7
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Composite Li10SnP2S12 (LSPS)/polyethylene oxide (PEO) films, containing 25 to 50 % polymer, were electrophoretically deposited from acetone-based suspension and tested as possible candidates for polysulfide barriers in Li/S batteries. It was found by XRD and XPS tests that saturation of composite films by LiI salt, followed by prolonged annealing at 90 A degrees C, diminishes the crystallinity of neat LSPS and results in the formation of a novel composite Li10+xIxSnP2S12 (LISPS)/P(EO)(3)/LiI solid electrolyte (x < 1). The high room-temperature ion conductivity of amorphous sulfide Li10+xIxSnP2S12 (0.1-0.3 mS cm(-1)) is restricted by slow ion transport via the polymer electrolyte (PE) imbedded in ceramics and grain boundaries between the PE and sulfide. Increase in polymer content and temperature improves total ion transport in the LISPS/PEO system. Conformal EPD coating of sulfur and lithium sulfide cathodes by the developed composite electrolyte increased the reversible capacity and Faradaic efficiency of the Li/S and Li/Li2S cells and enabled their operation at 60 A degrees C.
引用
收藏
页码:3393 / 3404
页数:12
相关论文
共 40 条
[1]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[2]   Peculiarities of ion transport in confined-in-ceramics concentrated polymer electrolytes [J].
Blanga, R. ;
Berman, M. ;
Biton, M. ;
Tariq, F. ;
Yufit, V. ;
Gladkich, A. ;
Greenbaum, S. G. ;
Brandon, N. ;
Golodnitsky, D. .
ELECTROCHIMICA ACTA, 2016, 208 :71-79
[3]   Solid Polymer-in-Ceramic Electrolyte Formed by Electrophoretic Deposition [J].
Blanga, R. ;
Burstein, L. ;
Berman, M. ;
Greenbaum, S. G. ;
Golodnitsky, D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (11) :D3084-D3089
[4]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[7]   XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces [J].
Graf, Nora ;
Yegen, Eda ;
Gross, Thomas ;
Lippitz, Andreas ;
Weigel, Wilfried ;
Krakert, Simone ;
Terfort, Andreas ;
Unger, Wolfgang E. S. .
SURFACE SCIENCE, 2009, 603 (18) :2849-2860
[8]   All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes [J].
Hayashi, A ;
Ohtomo, T ;
Mizuno, F ;
Tadanaga, K ;
Tatsumisago, M .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (08) :701-705
[9]   Characterization of Li2S-SiS2-LixMOy (M=Si, P, Ge) amorphous solid electrolytes prepared by melt-quenching and mechanical milling [J].
Hayashi, A ;
Yamashita, H ;
Tatsumisago, M ;
Minami, T .
SOLID STATE IONICS, 2002, 148 (3-4) :381-389
[10]  
Ji X, 2011, NAT COMMUN, V325, P293