Modeling pre-Exascale AMR Parallel I/O Workloads via Proxy Applications
被引:0
|
作者:
Godoy, William F.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USAOak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA
Godoy, William F.
[1
]
Delozier, Jenna
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USAOak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA
Delozier, Jenna
[2
]
Watson, Gregory R.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USAOak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA
Watson, Gregory R.
[1
]
机构:
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
来源:
2022 IEEE 36TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2022)
|
2022年
关键词:
Proxy;
I/O;
AMR;
MACSio;
HPC;
exascale;
D O I:
10.1109/IPDPSW55747.2022.00153
中图分类号:
TP3 [计算技术、计算机技术];
学科分类号:
0812 ;
摘要:
The present work investigates the modeling of pre-exascale input/output (DO) workloads of Adaptive Mesh Refinement (AMR) simulations through a simple proxy application. We collect data from the AMReX Castro framework running on the Summit supercomputer for a wide range of scales and mesh partitions for the hydrodynamic Sedov case as a baseline to provide sufficient coverage to the formulated proxy model. The non-linear analysis data production rates are quantified as a function of a set of input parameters such as output frequency, grid size, number of levels, and the Courant-Friedrichs-Lewy (CFL) condition number for each rank, mesh level and simulation time step. Linear regression is then applied to formulate a simple analytical model which allows to translate AMReX inputs into MACSio proxy I/O application parameters, resulting in a simple "kernel" approximation for data production at each time step. Results show that MACSio can simulate actual AMReX nonlinear "static" I/O workloads to a certain degree of confidence on the Summit supercomputer using the present methodology. The goal is to provide an initial level of understanding of AMR I/O workloads via lightweight proxy applications models to facilitate autotune data management strategies in anticipation of exascale systems.