Simultaneous eye and hand movements are highly coordinated and tightly coupled. This raises the question whether the selection of eye and hand targets relies on a shared attentional mechanism or separate attentional systems. Previous studies have revealed conflicting results by reporting evidence for both a shared as well as separate systems. Movement properties such as movement curvature can provide novel insights into this question as they provide a sensitive measure for attentional allocation during target selection. In the current study, participants performed simultaneous eye and hand movements to the same or different visual target locations. We show that both saccade and reaching movements curve away from the other effector's target location when they are simultaneously performed to spatially distinct locations. We argue that there is a shared attentional mechanism involved in selecting eye and hand targets that may be found on the level of effector-independent priority maps. NEW & NOTEWORTHY Movement properties such as movement curvature have been widely neglected as important sources of information in investigating whether the attentional systems underlying target selection for eye and hand movements are separate or shared. We convincingly show that movement curvature is influenced by the other effector's target location in simultaneous eye and hand movements to spatially distinct locations. Our results provide evidence for shared attentional systems involved in the selection of saccade and reach targets.