Direct evidence for symbiont sequestration in the marine red tide ciliate Mesodinium rubrum

被引:61
作者
Hansen, P. J. [1 ]
Moldrup, M. [1 ]
Tarangkoon, W. [1 ,2 ]
Garcia-Cuetos, L. [3 ]
Moestrup, O. [3 ]
机构
[1] Univ Copenhagen, Dept Biol, Marine Biol Lab, DK-3000 Helsingor, Denmark
[2] Rajamangala Univ Technol Srivijaya, Fac Sci & Fisheries Technol, Trang 92150, Thailand
[3] Univ Copenhagen, Dept Biol, Phycol Lab, DK-1353 Copenhagen, Denmark
关键词
Mesodinium rubrum; Symbionts; Ingestion; Cryptophytes; MYRIONECTA-RUBRA; RDNA PHYLOGENY; DNA-SEQUENCES; GROWTH; DINOPHYCEAE; EVOLUTION; NUCLEAR; INFERENCE; GENOME; CELLS;
D O I
10.3354/ame01559
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The red tide ciliate Mesodinium rubrum (= Myrionecta rubra) is known to contain symbionts of cryptophyte origin. Molecular data have shown that the symbiont is closely related or similar to free-living species of the Teleaulax/Plagioselmis/Geminigera clade. This suggests that the symbiont of M. rubrum is either a temporary symbiont or a quite recently established symbiont. Here, we present data from a number of experiments in which we offered M. rubrum a phototrophic dinoflagellate and 8 different cryptophyte species belonging to 5 different clades. Mesodinium rubrum was only able to grow when fed the 2 cryptophyte species belonging to the genus Teleaulax, T. acuta and T. amphioxeia. Using the nucleomorph large subunit rDNA gene as marker, we were able to discriminate the 2 Teleaulax species, allowing monitoring of the exchange of the symbionts in M. rubrum. Over a period of 35 d, M. rubrum was able to exchange its symbionts from T. amphioxeia symbionts to T. acuta symbionts. This research suggests that M. rubrum can only utilize prey within the Teleaulax/Plagioselmis/Geminigera clade for sustained high growth rates and provides the first time-frame of endosymbiont replacement by M. rubrum.
引用
收藏
页码:63 / 75
页数:13
相关论文
共 44 条
[1]  
BHATTACHARYA D, 1995, MOL BIOL EVOL, V12, P415
[2]   The highly reduced genome of an enslaved algal nucleus [J].
Douglas, S ;
Zauner, S ;
Fraunholz, M ;
Beaton, M ;
Penny, S ;
Deng, LT ;
Wu, XN ;
Reith, M ;
Cavalier-Smith, T ;
Maier, UG .
NATURE, 2001, 410 (6832) :1091-1096
[3]   EVOLUTIONARY TREES FROM DNA-SEQUENCES - A MAXIMUM-LIKELIHOOD APPROACH [J].
FELSENSTEIN, J .
JOURNAL OF MOLECULAR EVOLUTION, 1981, 17 (06) :368-376
[4]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[5]   Microsatellite genotyping of single cells of the dinoflagellate species Lingulodinium polyedrum (Dinophyceae):: A novel approach for marine microbial population genetic studies [J].
Frommlet, Joerg C. ;
Iglesias-Rodriguez, M. Debora .
JOURNAL OF PHYCOLOGY, 2008, 44 (05) :1116-1125
[6]   The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts [J].
Garcia-Cuetos, Lydia ;
Moestrup, Ojvind ;
Hansen, Per Juel ;
Daugbjerg, Niels .
HARMFUL ALGAE, 2010, 9 (01) :25-38
[7]  
Guillard R.R.L., 1975, CULTURE MARINE INVER, P29, DOI [10.1007/978-1-4615-8714-9_3, DOI 10.1007/978-1-4615-8714-9_3, 10.1007/978-1-4615-8714-93]
[8]   A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood [J].
Guindon, S ;
Gascuel, O .
SYSTEMATIC BIOLOGY, 2003, 52 (05) :696-704
[9]   Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum [J].
Gustafson, DE ;
Stoecker, DK ;
Johnson, MD ;
Van Heukelem, WF ;
Sneider, K .
NATURE, 2000, 405 (6790) :1049-1052
[10]   DSP toxin production de novo in cultures of Dinophysis acuminata (Dinophyceae) from North America [J].
Hackett, Jeremiah D. ;
Tong, Mengmeng ;
Kulis, David M. ;
Fux, Elie ;
Hess, Philipp ;
Bire, Ronel ;
Anderson, Donald M. .
HARMFUL ALGAE, 2009, 8 (06) :873-879