Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies

被引:101
作者
Haxby, James, V [1 ]
Guntupalli, J. Swaroop [2 ]
Nastase, Samuel A. [3 ]
Ma Feilong [1 ]
机构
[1] Dartmouth Coll, Ctr Cognit Neurosci, Hanover, NH 03755 USA
[2] Vicarious AI, Union City, CA USA
[3] Princeton Neurosci Inst, Princeton, NJ USA
基金
美国国家科学基金会;
关键词
BRAIN ACTIVITY; REPRESENTATIONAL SPACES; PATTERN-ANALYSIS; TEMPORAL CORTEX; NATURAL IMAGES; SEMANTIC SPACE; FMRI; OBJECT; NEURONS; PARCELLATION;
D O I
10.7554/eLife.56601
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Information that is shared across brains is encoded in idiosyncratic fine-scale functional topographies. Hyperalignment captures shared information by projecting pattern vectors for neural responses and connectivities into a common, high-dimensional information space, rather than by aligning topographies in a canonical anatomical space. Individual transformation matrices project information from individual anatomical spaces into the common model information space, preserving the geometry of pairwise dissimilarities between pattern vectors, and model cortical topography as mixtures of overlapping, individual-specific topographic basis functions, rather than as contiguous functional areas. The fundamental property of brain function that is preserved across brains is information content, rather than the functional properties of local features that support that content. In this Perspective, we present the conceptual framework that motivates hyperalignment, its computational underpinnings for joint modeling of a common information space and idiosyncratic cortical topographies, and discuss implications for understanding the structure of cortical functional architecture.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 119 条
[1]   Seeing faces is necessary for face-domain formation [J].
Arcaro, Michael J. ;
Schade, Peter F. ;
Vincent, Justin L. ;
Ponce, Carlos R. ;
Livingstone, Margaret S. .
NATURE NEUROSCIENCE, 2017, 20 (10) :1404-+
[2]   Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization [J].
Arcaro, Michael J. ;
Honey, Christopher J. ;
Mruczek, Ryan E. B. ;
Kastner, Sabine ;
Hasson, Uri .
ELIFE, 2015, 4
[3]   Pyrcca: Regularized Kernel Canonical Correlation Analysis in Python']Python and Its Application to Neuroimaging [J].
Bilenko, Natalia Y. ;
Gallant, Jack L. .
FRONTIERS IN NEUROINFORMATICS, 2016, 10
[4]   Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding [J].
Borghesani, Valentina ;
Pedregosa, Fabian ;
Buiatti, Marco ;
Amadon, Alexis ;
Eger, Evelyn ;
Piazza, Manuela .
NEUROIMAGE, 2016, 143 :128-140
[5]   Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions [J].
Braga, Rodrigo M. ;
Van Dijk, Koene R. A. ;
Polimeni, Jonathan R. ;
Eldaief, Mark C. ;
Buckner, Randy L. .
JOURNAL OF NEUROPHYSIOLOGY, 2019, 121 (04) :1513-1534
[6]   Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity [J].
Braga, Rodrigo M. ;
Buckner, Randy L. .
NEURON, 2017, 95 (02) :457-+
[7]  
Brodman K., 1909, Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien dargestellt Auf Grund des Zellenbaues
[8]   Classical Statistics and Statistical Learning in Imaging Neuroscience [J].
Bzdok, Danilo .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[9]  
CASTELLO MVD, 2017, SCI REP, V7, P1, DOI DOI 10.1038/S41598-017-12559-1
[10]   Unique semantic space in the brain of each beholder predicts perceived similarity [J].
Charest, Ian ;
Kievit, Rogier A. ;
Schmitz, Taylor W. ;
Deca, Diana ;
Kriegeskorte, Nikolaus .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (40) :14565-14570