Complex Gaussian Multiplicative Chaos

被引:33
作者
Lacoin, Hubert [1 ]
Rhodes, Remi [2 ]
Vargas, Vincent [3 ]
机构
[1] IMPA, Intitudo Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Univ Paris Est Marne Vallee, LAMA, Champs Sur Marne, France
[3] Ecole Normale Super, DMA, F-75005 Paris, France
关键词
INVARIANT RANDOM MEASURES; QUANTUM-GRAVITY; FIELD-THEORY; DIRECTED POLYMERS; CONVERGENCE; MARTINGALE; GEOMETRY; 2D;
D O I
10.1007/s00220-015-2362-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we study complex Gaussian multiplicative chaos. More precisely, we study the renormalization theory and the limit of the exponential of a complex log-correlated Gaussian field in all dimensions (including Gaussian Free Fields in dimension 2). Our main working assumption is that the real part and the imaginary part are independent. We also discuss applications in 2D string theory; in particular we give a rigorous mathematical definition of the so-called Tachyon fields, the conformally invariant operators in critical Liouville Quantum Gravity with a c = 1 central charge, and derive the original KPZ formula for these fields.
引用
收藏
页码:569 / 632
页数:64
相关论文
共 45 条
[1]  
Allez R, 2013, PROBAB THEORY REL, V155, P751, DOI 10.1007/s00440-012-0412-9
[2]   Log-infinitely divisible multifractal processes [J].
Bacry, E ;
Muzy, JF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (03) :449-475
[3]   Multifractal products of cylindrical pulses [J].
Barral, J ;
Mandelbrot, BB .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 124 (03) :409-430
[4]  
Barral J., ANN PROBAB IN PRESS
[5]   Gaussian Multiplicative Chaos and KPZ Duality [J].
Barral, Julien ;
Jin, Xiong ;
Rhodes, Remi ;
Vargas, Vincent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (02) :451-485
[6]   CONVERGENCE OF COMPLEX MULTIPLICATIVE CASCADES [J].
Barral, Julien ;
Jin, Xiong ;
Mandelbrot, Benoit .
ANNALS OF APPLIED PROBABILITY, 2010, 20 (04) :1219-1252
[7]   UNIFORM CONVERGENCE FOR COMPLEX [0,1]-MARTINGALES [J].
Barral, Julien ;
Jin, Xiong ;
Mandelbrot, Benoit .
ANNALS OF APPLIED PROBABILITY, 2010, 20 (04) :1205-1218
[8]  
Bramson M., ARXIV13016669
[9]   WHAT IS THE INTRINSIC GEOMETRY OF 2-DIMENSIONAL QUANTUM-GRAVITY [J].
DAVID, F .
NUCLEAR PHYSICS B, 1992, 368 (03) :671-700
[10]  
David F., ARXIV13073123