Packing dimension and Cartesian products

被引:10
作者
Bishop, CJ [1 ]
Peres, Y [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
Hausdorff dimension; packing dimension; Cartesian product; tree;
D O I
10.1090/S0002-9947-96-01750-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any analytic set A in R(d), its packing dimension dim, (A) can be represented as sup(B){dim(H)(A x B) - dim(H)(B)}, where the supremum is over all compact sets B in R(d), and dim, denotes Hausdorff dimension. (The lower bound on packing dimension was proved by Tricot in 1982.) Moreover, the supremum above is attained, at least if dim(P) (A) < d. In contrast, we show that the dual quantity inf(B){dim(P)(A x B) - dim(P) (B)}, is at least the ''lower packing dimension'' of A, but can be strictly greater. (The lower packing dimension is greater than or equal to the Hausdorff dimension.)
引用
收藏
页码:4433 / 4445
页数:13
相关论文
共 15 条
[1]  
BENJAMINI I, 1992, ANN I H POINCARE-PR, V28, P557
[2]   TREE-INDEXED RANDOM-WALKS ON GROUPS AND 1ST PASSAGE PERCOLATION [J].
BENJAMINI, I ;
PERES, Y .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (01) :91-112
[3]  
Besicovitch AS., 1945, J LOND MATH SOC, V20, P110
[4]  
Falconer K., 2004, Fractal geometry-mathematical foundations and applications
[5]  
FALCONER KJ, 1996, IN PRESS MATH P CAMB, V119, P287
[6]   FRACTAL PROPERTIES OF PRODUCTS AND PROJECTION OF MEASURES IN RD [J].
HU, XY ;
TAYLOR, SJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 :527-544
[7]  
JOYCE H, 1995, IN PRESS MATHEMATIKA, V42, P1
[8]   ENTROPY, DIMENSION, AND RANDOM SETS [J].
KAUFMAN, R .
QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (149) :77-80
[9]  
Marstrand J.M., 1954, P LOND MATH SOC, V3, P257, DOI [DOI 10.1112/PLMS/S3-4.1.257, 10.1112/plms/s3-4.1.257]
[10]  
MATTILA P, 1995, GEOMETRY SETS MEASUR, P13