Proof of Laszl Fejes Tth's zone conjecture

被引:12
作者
Jiang, Zilin [1 ]
Polyanskii, Alexandr [2 ,3 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[2] RAS, Moscow Inst Phys & Technol, Moscow, Russia
[3] RAS, Inst Informat Transmiss Problems, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
PLANK PROBLEM; BODIES;
D O I
10.1007/s00039-017-0427-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A zone of width omega on the unit sphere is the set of points within spherical distance omega/2 of a given great circle. We show that the total width of any collection of zones covering the unit sphere is at least pi, answering a question of Fejes Tth from 1973.
引用
收藏
页码:1367 / 1377
页数:11
相关论文
共 21 条
[1]   Fractional planks [J].
Aharoni, R ;
Holzman, R ;
Krivelevich, M ;
Meshulam, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 27 (04) :585-602
[2]  
Akopyan A., 2014, ARXIV14040871MATHMG
[3]   Kadets-Type Theorems for Partitions of a Convex Body [J].
Akopyan, Arseniy ;
Karasev, Roman .
DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (03) :766-776
[4]  
[Anonymous], 1992, INT MATH RES NOTICES, DOI DOI 10.1155/S1073792892000242
[5]  
[Anonymous], 2010, BEITRAGE ALGEBRA GEO
[6]   THE PLANK PROBLEM FOR SYMMETRICAL BODIES [J].
BALL, K .
INVENTIONES MATHEMATICAE, 1991, 104 (03) :535-543
[7]  
Ball KM, 2001, B LOND MATH SOC, V33, P433
[8]   A SOLUTION OF THE PLANK PROBLEM [J].
BANG, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 2 (06) :990-993
[9]   Covering an annulus by strips [J].
Bezdek, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) :177-180
[10]  
Bezdek K, 2013, BOLYAI SOC MATH STUD, V24, P45