On the Laplacian integral (k - 1)-cyclic graphs

被引:0
|
作者
Huang, Xueyi [1 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Laplacian spectrum; Laplacian integral graph; generalized theta-graph; EIGENVALUES; MATRICES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called Laplacian integral if its Laplacian spectrum consists of integers. Let theta(n(1), n(2) ..., n(k)) be a generalized theta-graph (see Figure 1). Denote by g(k-1) the set of (k - 1)-cyclic graphs each of them contains some generalized theta-graph theta(n(1), n(2), ..., n(k)) as its induced subgraph. In this paper, we give an edge subdividing theorem for Laplacian eigenvalues of a graph (Theorem 2.1), from which we identify all the Laplacian integral graphs in the class g(k-1) (Theorem 3.2).
引用
收藏
页码:247 / 256
页数:10
相关论文
共 50 条
  • [1] On the Laplacian integral tricyclic graphs
    Huang, Xueyi
    Huang, Qiongxiang
    Wen, Fei
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07) : 1356 - 1371
  • [2] Total Graphs Are Laplacian Integral
    Dolzan, David
    Oblak, Polona
    ALGEBRA COLLOQUIUM, 2022, 29 (03) : 427 - 436
  • [3] Integral Laplacian graphs with a unique repeated Laplacian eigenvalue, I
    Hameed, Abdul
    Tyaglov, Mikhail
    SPECIAL MATRICES, 2023, 11 (01):
  • [4] Indecomposable Laplacian integral graphs
    Grone, Robert
    Merris, Russell
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1565 - 1570
  • [5] On the Conjecture for Certain Laplacian Integral Spectrum of Graphs
    Das, Kinkar Ch.
    Lee, Sang-Gu
    Cheon, Gi-Sang
    JOURNAL OF GRAPH THEORY, 2010, 63 (02) : 106 - 113
  • [6] Constructably Laplacian integral graphs
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 3 - 21
  • [7] Spectral integral variations and Laplacian integral graphs
    Wang, Yi
    Fan, Yi-Zheng
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 300 - 303
  • [8] Laplacian energy and first Zagreb index of Laplacian integral graphs
    Hameed, Abdul
    Khan, Zia Ullah
    Tyaglov, Mikhail
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 133 - 160
  • [9] Laplacian integral signed graphs with few cycles
    Wang, Dijian
    Gao, Dongdong
    AIMS MATHEMATICS, 2023, 8 (03): : 7021 - 7031
  • [10] Completion of Laplacian integral graphs via edge addition
    Kirkland, S
    DISCRETE MATHEMATICS, 2005, 295 (1-3) : 75 - 90