Conformational Dynamics in the Core of Human Y145Stop Prion Protein Amyloid Probed by Relaxation Dispersion NMR

被引:18
作者
Shannon, Matthew D. [1 ]
Theint, Theint [1 ]
Mukhopadhyay, Dwaipayan [1 ]
Surewicz, Krystyna [2 ]
Surewicz, Witold K. [2 ]
Marion, Dominique [3 ]
Schanda, Paul [3 ]
Jaroniec, Christopher P. [1 ]
机构
[1] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
[2] Case Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH USA
[3] IBS, F-38027 Grenoble, France
基金
欧洲研究理事会; 美国国家科学基金会; 美国国家卫生研究院;
关键词
Amyloids; NMR spectroscopy; prions; protein dynamics; relaxation dispersion; SOLID-STATE NMR; MAGNETIC-RESONANCE; BACKBONE DYNAMICS; SPECTROSCOPY; ASSIGNMENT; RESOLUTION; FIBRILS; TIMESCALES; PRINCIPLES; COUPLINGS;
D O I
10.1002/cphc.201800779
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microsecond to millisecond timescale backbone dynamics of the amyloid core residues in Y145Stop human prion protein (PrP) fibrils were investigated by using N-15 rotating frame (R-1 rho) relaxation dispersion solid-state nuclear magnetic resonance spectroscopy over a wide range of spin-lock fields. Numerical simulations enabled the experimental relaxation dispersion profiles for most of the fibril core residues to be modelled by using a two-state exchange process with a common exchange rate of 1000 s(-1), corresponding to protein backbone motion on the timescale of 1 ms, and an excited-state population of 2 %. We also found that the relaxation dispersion profiles for several amino acids positioned near the edges of the most structured regions of the amyloid core were better modelled by assuming somewhat higher excited-state populations (similar to 5-15 %) and faster exchange rate constants, corresponding to protein backbone motions on the timescale of similar to 100-300 mu s. The slow backbone dynamics of the core residues were evaluated in the context of the structural model of human Y145Stop PrP amyloid.
引用
收藏
页码:311 / 317
页数:7
相关论文
共 56 条
[41]   Microsecond Timescale Protein Dynamics: a Combined Solid-State NMR Approach [J].
Rovo, Petra ;
Linser, Rasmus .
CHEMPHYSCHEM, 2018, 19 (01) :34-39
[42]   Structural Determinants of Phenotypic Diversity and Replication Rate of Human Prions [J].
Safar, Jiri G. ;
Xiao, Xiangzhu ;
Kabir, Mohammad E. ;
Chen, Shugui ;
Kim, Chae ;
Haldiman, Tracy ;
Cohen, Yvonne ;
Chen, Wei ;
Cohen, Mark L. ;
Surewicz, Witold K. .
PLOS PATHOGENS, 2015, 11 (04)
[43]  
Schanda P., 2009, ANGEW CHEM, V121, P9486
[44]   Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: Principles and applications to biomolecules [J].
Schanda, Paul ;
Ernst, Matthias .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2016, 96 :1-46
[45]   Direct Detection of 3hJNC′ Hydrogen-Bond Scalar Couplings in Proteins by Solid-State NMR Spectroscopy [J].
Schanda, Paul ;
Huber, Matthias ;
Verel, Rene ;
Ernst, Matthias ;
Meier, Beat H. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (49) :9322-9325
[46]   EVALUATION OF A NEW BROAD-BAND DECOUPLING SEQUENCE - WALTZ-16 [J].
SHAKA, AJ ;
KEELER, J ;
FREEMAN, R .
JOURNAL OF MAGNETIC RESONANCE, 1983, 53 (02) :313-340
[47]   Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks [J].
Shen, Yang ;
Bax, Ad .
JOURNAL OF BIOMOLECULAR NMR, 2013, 56 (03) :227-241
[48]   Characterization of fibril dynamics on three timescales by solid-state NMR [J].
Smith, Albert A. ;
Testori, Emilie ;
Cadalbert, Riccardo ;
Meier, Beat H. ;
Ernst, Matthias .
JOURNAL OF BIOMOLECULAR NMR, 2016, 65 (3-4) :171-191
[49]   COMPUTER-SIMULATIONS IN MAGNETIC-RESONANCE - AN OBJECT-ORIENTED PROGRAMMING APPROACH [J].
SMITH, SA ;
LEVANTE, TO ;
MEIER, BH ;
ERNST, RR .
JOURNAL OF MAGNETIC RESONANCE SERIES A, 1994, 106 (01) :75-105
[50]   The emerging principles of mammalian prion propagation and transmissibility barriers: Insight from studies in vitro [J].
Surewicz, Witold K. ;
Jones, Eric M. ;
Apetri, Adrian C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2006, 39 (09) :654-662