Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO2

被引:78
作者
Lee, Hyunhwa [1 ,2 ,3 ]
Lee, Hyunsoo [3 ]
Park, Jeong Young [1 ,2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch EEWS, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Chem, Daejeon 34141, South Korea
[3] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Daejeon 34141, South Korea
关键词
Photoconductive atomic force microscopy; Schottky diode; hot electron; Au nanoprism; field confinement; localized surface plasmon resonance; DYNAMICS; FLOW; NANOPARTICLES; FABRICATION; EXCITATION; NANODIODES;
D O I
10.1021/acs.nanolett.8b04119
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct measurement of hot electron flux from a plasmonic Schottky nanodiode is important for obtaining fundamental insights explaining the mechanism for electronic excitation on a surface. Here, we report the measurement of photoinduced hot electrons on a triangular Au nanoprism on TiO2 under incident light with photoconductive atomic force microscopy (pc-AFM), which is direct proof of the intrinsic relation between hot electrons and localized surface plasmon resonance. We find that the local photocurrent measured on the boundary of the Au nanoprism is higher than that inside the Au nanoprism, indicating that field confinement at the boundary of the Au nanoprism acts as a hot spot, leading to the enhancement of hot electron flow at the boundary. Under incident illumination with a wavelength near the absorption peak (645 nm) of a single Au nanoprism, localized surface plasmon resonance resulted in the generation of a higher photoinduced hot electron flow for the Au nanoprism/TiO2, compared with that at a wavelength of 532 nm. We show that the application of a reverse bias results in a higher photocurrent for the Au nanoprism/TiO2, which is associated with a lowering of the Schottky barrier height caused by the image force. These nanoscale measurements of hot electron flux with pc-AFM indicate efficient photon energy transfer mediated by surface plasmons in hot electron-based energy conversion.
引用
收藏
页码:891 / 896
页数:6
相关论文
共 43 条
[1]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[2]   Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry [J].
Brown, Ana M. ;
Sundararaman, Ravishankar ;
Narang, Prineha ;
Goddard, William A., III ;
Atwater, Harry A. .
ACS NANO, 2016, 10 (01) :957-966
[3]   Enhanced light confinement in a triangular aperture: Experimental evidence and numerical calculations [J].
des Francs, GC ;
Molenda, D ;
Fischer, UC ;
Naber, A .
PHYSICAL REVIEW B, 2005, 72 (16)
[4]   Nanoscale imaging of charge carrier transport in water splitting photoanodes [J].
Eichhorn, Johanna ;
Kastl, Christoph ;
Cooper, Jason K. ;
Ziegler, Dominik ;
Schwartzberg, Adam M. ;
Sharp, Ian D. ;
Toma, Francesca M. .
NATURE COMMUNICATIONS, 2018, 9
[5]   Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles [J].
Furube, Akihiro ;
Du, Luchao ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, Masanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (48) :14852-+
[6]   On the detection of chemically-induced hot electrons in surface processes: from X-ray edges to schottky barriers [J].
Gadzuk, JW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (33) :8265-8270
[7]   Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters [J].
Giannini, Vincenzo ;
Fernandez-Dominguez, Antonio I. ;
Heck, Susannah C. ;
Maier, Stefan A. .
CHEMICAL REVIEWS, 2011, 111 (06) :3888-3912
[8]   Optical Studies of Dynamics in Noble Metal Nanostructures [J].
Hartland, Gregory V. .
CHEMICAL REVIEWS, 2011, 111 (06) :3858-3887
[9]   Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements [J].
Heilpern, Tal ;
Manjare, Manoj ;
Govorov, Alexander O. ;
Wiederrecht, Gary P. ;
Gray, Stephen K. ;
Harutyunyan, Hayk .
NATURE COMMUNICATIONS, 2018, 9
[10]   Electron and lattice dynamics following optical excitation of metals [J].
Hohlfeld, J ;
Wellershoff, SS ;
Güdde, J ;
Conrad, U ;
Jähnke, V ;
Matthias, E .
CHEMICAL PHYSICS, 2000, 251 (1-3) :237-258