Well-posedness of variational problems with applications to staircase methods

被引:4
作者
Lemaire, B
Salem, COA
Revalski, JP
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
[2] Univ Sci & Tech, Nouakchott, Mauritania
[3] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2001年 / 332卷 / 10期
关键词
D O I
10.1016/S0764-4442(01)01960-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we extend the notion of well-posedness by perturbations, introduced by Zolezzi for optimization problems, for inclusion and fixed-point problems. Then we investigate conditions under which we have equivalence for this concept between the different problems. An application to methods coupling iteration and approximation is presented. (C) 2001 Academie des sciences/Editions scientifiques el medicales Elsevier SAS.
引用
收藏
页码:943 / 948
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 1994, STABLE METHODS ILL P
[2]   CONVEX FUNCTIONS WITH UNBOUNDED LEVEL SETS AND APPLICATIONS TO DUALITY THEORY [J].
Auslender, A. ;
Cominetti, R. ;
Crouzeix, J. -P. .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (04) :669-687
[3]   METRICALLY WELL-SET MINIMIZATION PROBLEMS [J].
BEDNARCZUK, E ;
PENOT, JP .
APPLIED MATHEMATICS AND OPTIMIZATION, 1992, 26 (03) :273-285
[4]  
Dontchev AL, 1993, Lecture Notes in Mathematics, V1543
[5]  
Lemaire B, 1999, LECT NOTES ECON MATH, V477, P151
[6]  
Lemaire B., 1998, Pliska Stud. Math. Bulgar, V12, P71
[7]  
LORIDAN P, 1973, SIAM J CONTROL, V11, P173, DOI 10.1137/0311014
[8]   OPTIMIZATION PROCEDURE USING PENALIZATION METHODS AND LOCAL VARIATIONS SIMULTANEOUSLY .1. [J].
LORIDAN, P .
SIAM JOURNAL ON CONTROL, 1973, 11 (01) :159-172
[9]  
REVALSKI JP, 1993, J OPTIM THEORY APPL, V76, P143
[10]   MONOTONE OPERATORS AND PROXIMAL POINT ALGORITHM [J].
ROCKAFELLAR, RT .
SIAM JOURNAL ON CONTROL, 1976, 14 (05) :877-898