Random 2 XORSAT Phase Transition

被引:7
作者
Herve, Daude [2 ]
Vlady, Ravelomanana [1 ]
机构
[1] Univ Paris 13, Lab Informat Paris Nord, CNRS, Inst Galilee,UMR 7030, F-93430 Villetaneuse, France
[2] Univ Aix Marseille 1, Lab Anal Topol & Probabilites, CNRS, UMR 6632, F-13453 Marseille 13, France
关键词
XORSAT; Satisfiability; Constraint Satisfaction Problem; Phase transition; Random graph; Generating functions; Finite size scaling; K-SAT; THRESHOLD; GRAPHS; SIZE;
D O I
10.1007/s00453-009-9308-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the 2-XOR satisfiability problem, in which each instance is a formula that is a conjunction of Boolean equations of the form x circle plus y = 0 or x circle plus y = 1. Formula of size m on n Boolean variables are chosen uniformly at random from among all ((n(n-1))(m)) possible choices. When c < 1/2 and as n tends to infinity, the probability p(n, m = cn) that a random 2-XOR formula is satisfiable, tends to the threshold function exp(c/2) . (1 - 2c)(1/4). This gives the asymptotic behavior of random 2-XOR formula in the SAT/UNSAT subcritical phase transition. In this paper, we first prove that the error term in this subcritical region is O(n(-1)). Then, in the critical region c = 1/2, we prove that p(n, n/2) = Theta(n(-1/12)). Our study relies on the symbolic method and analytical tools coming from generating function theory which also enable us to describe the evolution of n(1/12) p(n, n/2(1 + mu n(-1/3))) as a function of mu. Thus, we propose a complete picture of the finite size scaling associated to the subcritical and critical regions of 2-XORSAT transition.
引用
收藏
页码:48 / 65
页数:18
相关论文
共 31 条
[1]   Random k-SAT:: Two moments suffice to cross a sharp threshold [J].
Achlioptas, Dimitris ;
Moore, Cristopher .
SIAM JOURNAL ON COMPUTING, 2006, 36 (03) :740-762
[2]   On the fluctuations of the giant component [J].
Barraez, D ;
Boucheron, S ;
De la Vega, WF .
COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (04) :287-304
[3]   The scaling window of the 2-SAT transition [J].
Bollobás, B ;
Borgs, C ;
Chayes, JT ;
Kim, JH ;
Wilson, DB .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (03) :201-256
[4]  
Cayley Arthur, 1889, Q. J. Pure Appl. Math., V23, P376
[5]  
CHVATAL V, 1992, AN S FDN CO, P620
[6]   Rigorous decimation-based construction of ground pure states for spin-glass models on random lattices [J].
Cocco, S ;
Dubois, O ;
Mandler, J ;
Monasson, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (04) :4-472054
[7]  
Creignou N, 2004, TRENDS MATH, P507
[8]   Satisfiability threshold for random XOR-CNF formulas [J].
Creignou, N ;
Daude, H .
DISCRETE APPLIED MATHEMATICS, 1999, 97 :41-53
[9]  
Creignou N., 2003, INFORMATIQUE THEORIQ, V37, P127
[10]   FINITE SIZE SCALING FOR THE CORE OF LARGE RANDOM HYPERGRAPHS [J].
Dembo, Amir ;
Montanar, Andrea .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (05) :1993-2040