Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities

被引:92
作者
Pan, Zhiming [1 ]
Zhao, Meng [1 ]
Zhuzhang, Hangyu [1 ]
Zhang, Guigang [1 ]
Anpo, Masakazu [1 ]
Wang, Xinchen [1 ]
机构
[1] Fuzhou Univ, State Key Lab Photocatalysis Energy & Environm, Coll Chem, Fuzhou 350116, Peoples R China
基金
中国国家自然科学基金;
关键词
photocatalytic water oxidation; polymeric carbon nitride; gradient VDW homojunction; separation of excitons; Lewis acid-base; GRAPHITIC CARBON NITRIDES; ULTRAFAST CHARGE-TRANSFER; HYDROGEN-EVOLUTION; IN-SITU; G-C3N4; PHOTOCATALYST; SPECTROSCOPY; COCATALYSTS; CRYSTALLINE; CATALYSTS;
D O I
10.1021/acscatal.1c03687
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionothermal synthesis of amorphous melon in a ternary salt melt (ZnCl2-LiCl-KCl) with lower melting points could promote the polycondensation process and improve the degree of crystallinity. As Zn2+ ions tend to incorporate with edge nitrogen of carbon nitride via Lewis acid-base interactions, a series of crystalline hybrid poly heptazine imides (PHI), namely, Zn-PHI/PHI, integrated by van der Waals interactions, were generated as main products. Interestingly, the contents of doped Zn2+ ions of the as-synthesized Zn-PHI/PHI gradually decrease from the bulk interior to surfaces, due to the evaporation of ZnCl2 during thermal heating processes. Accordingly, a built-in electric field would be created in the catalyst, which largely accelerates a separation of the photogenerated charge carriers at the interfaces. Owing to the fast charge carrier separation and transfer, this hybrid polymer is active for photocatalytic water oxidation with an apparent quantum yield of up to 3.6% at 420 nm. This work offers a strategy for the rational design and synthesis of polymeric photocatalysts for water oxidation reaction.
引用
收藏
页码:13463 / 13471
页数:9
相关论文
共 62 条
[1]   Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride [J].
Bojdys, Michael J. ;
Mueller, Jens-Oliver ;
Antonietti, Markus ;
Thomas, Arne .
CHEMISTRY-A EUROPEAN JOURNAL, 2008, 14 (27) :8177-8182
[2]   Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2-MoSe2 van der Waals Heterostructure [J].
Ceballos, Frank ;
Bellus, Matthew Z. ;
Chiu, Hsin-Ying ;
Zhao, Hui .
ACS NANO, 2014, 8 (12) :12717-12724
[3]   Interface Engineering of a CoOx/Ta3N5 Photocatalyst for Unprecedented Water Oxidation Performance under Visible-Light-Irradiation [J].
Chen, Shanshan ;
Shen, Shuai ;
Liu, Guiji ;
Qi, Yu ;
Zhang, Fuxiang ;
Li, Can .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (10) :3047-3051
[4]   Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting [J].
Chen, Xianjie ;
Shi, Run ;
Chen, Qian ;
Zhang, Zijian ;
Jiang, Wenjun ;
Zhu, Yongfa ;
Zhang, Tierui .
NANO ENERGY, 2019, 59 :644-650
[5]   Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts [J].
Corps, Kathryn L. ;
Schlenker, Cody W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (23) :7904-7912
[6]   1,2,4-Triazole-Based Approach to Noble-Metal-Free Visible-Light Driven Water Splitting over Carbon Nitrides [J].
Dontsova, Dariya ;
Fettkenhauer, Christian ;
Papaefthimiou, Vasiliki ;
Schmid, Johannes ;
Antonietti, Markus .
CHEMISTRY OF MATERIALS, 2016, 28 (03) :772-778
[7]   Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction [J].
Fu, Wei ;
He, Haiyong ;
Zhang, Zhuhua ;
Wu, Chunyang ;
Wang, Xuewen ;
Wang, Hong ;
Zeng, Qingsheng ;
Sun, Linfeng ;
Wang, Xingli ;
Zhou, Jiadong ;
Fu, Qundong ;
Yu, Peng ;
Shen, Zexiang ;
Jin, Chuanhong ;
Yakobson, Boris I. ;
Liu, Zheng .
NANO ENERGY, 2016, 27 :44-50
[8]   In situ synthesis of cobalt-phosphate (Co-Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities [J].
Ge, Lei ;
Han, Changcun ;
Xiao, Xinlai ;
Guo, Lele .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 :414-422
[9]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[10]   Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4 [J].
Han, Lili ;
Song, Shoujie ;
Liu, Mingjie ;
Yao, Siyu ;
Liang, Zhixiu ;
Cheng, Hao ;
Ren, Zhouhong ;
Liu, Wei ;
Lin, Ruoqian ;
Qi, Gaocan ;
Liu, Xijun ;
Wu, Qin ;
Luo, Jun ;
Xin, Huolin L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (29) :12563-12567