Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer

被引:36
作者
Cook, Leah M. [1 ]
Araujo, Arturo [2 ]
Pow-Sang, Julio M. [3 ]
Budzevich, Mikalai M. [4 ]
Basanta, David [2 ]
Lynch, Conor C. [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Tumor Biol Dept, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Integrated Math Oncol Dept, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Genitourinary Oncol Dept, Tampa, FL USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
GROWTH-FACTOR-BETA; TGF-BETA; MATHEMATICAL-MODEL; TUMOR-GROWTH; PROGRESSION; DRIVEN; CELLS; HETEROGENEITY; GLIOBLASTOMA; INHIBITION;
D O I
10.1038/srep29384
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to rapidly assess the efficacy of therapeutic strategies for incurable bone metastatic prostate cancer is an urgent need. Pre-clinical in vivo models are limited in their ability to define the temporal effects of therapies on simultaneous multicellular interactions in the cancer-bone microenvironment. Integrating biological and computational modeling approaches can overcome this limitation. Here, we generated a biologically driven discrete hybrid cellular automaton (HCA) model of bone metastatic prostate cancer to identify the optimal therapeutic window for putative targeted therapies. As proof of principle, we focused on TGF beta because of its known pleiotropic cellular effects. HCA simulations predict an optimal effect for TGF beta inhibition in a pre-metastatic setting with quantitative outputs indicating a significant impact on prostate cancer cell viability, osteoclast formation and osteoblast differentiation. In silico predictions were validated in vivo with models of bone metastatic prostate cancer (PAIII and C4-2B). Analysis of human bone metastatic prostate cancer specimens reveals heterogeneous cancer cell use of TGF beta. Patient specific information was seeded into the HCA model to predict the effect of TGF beta inhibitor treatment on disease evolution. Collectively, we demonstrate how an integrated computational/biological approach can rapidly optimize the efficacy of potential targeted therapies on bone metastatic prostate cancer.
引用
收藏
页数:12
相关论文
共 62 条
[1]   The mathematics of cancer: integrating quantitative models [J].
Altrock, Philipp M. ;
Liu, Lin L. ;
Michor, Franziska .
NATURE REVIEWS CANCER, 2015, 15 (12) :730-745
[2]   Integrative mathematical oncology [J].
Anderson, Alexander R. A. ;
Quaranta, Vito .
NATURE REVIEWS CANCER, 2008, 8 (03) :227-234
[3]   Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment [J].
Anderson, Alexander R. A. ;
Weaver, Alissa M. ;
Cummings, Peter T. ;
Quaranta, Vito .
CELL, 2006, 127 (05) :905-915
[4]   Microenvironmental Independence Associated with Tumor Progression [J].
Anderson, Alexander R. A. ;
Hassanein, Mohamed ;
Branch, Kevin M. ;
Lu, Jenny ;
Lobdell, Nichole A. ;
Maier, Julie ;
Basanta, David ;
Weidow, Brandy ;
Narasanna, Archana ;
Arteaga, Carlos L. ;
Reynolds, Albert B. ;
Quaranta, Vito ;
Estrada, Lourdes ;
Weaver, Alissa M. .
CANCER RESEARCH, 2009, 69 (22) :8797-8806
[5]   An Integrated Computational Model of the Bone Microenvironment in Bone-Metastatic Prostate Cancer [J].
Araujo, Arturo ;
Cook, Leah M. ;
Lynch, Conor C. ;
Basanta, David .
CANCER RESEARCH, 2014, 74 (09) :2391-2401
[6]   Exploiting ecological principles to better understand cancer progression and treatment [J].
Basanta, David ;
Anderson, Alexander R. A. .
INTERFACE FOCUS, 2013, 3 (04)
[7]   Exploiting Evolution To Treat Drug Resistance: Combination Therapy and the Double Bind [J].
Basanta, David ;
Gatenby, Robert A. ;
Anderson, Alexander R. A. .
MOLECULAR PHARMACEUTICS, 2012, 9 (04) :914-921
[8]   The Role of Transforming Growth Factor-β-Mediated Tumor-Stroma Interactions in Prostate Cancer Progression: An Integrative Approach [J].
Basanta, David ;
Strand, Douglas W. ;
Lukner, Ralf B. ;
Franco, Omar E. ;
Cliffel, David E. ;
Ayala, Gustavo E. ;
Hayward, Simon W. ;
Anderson, Alexander R. A. .
CANCER RESEARCH, 2009, 69 (17) :7111-7120
[9]   Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth [J].
Benzekry, Sebastien ;
Lamont, Clare ;
Beheshti, Afshin ;
Tracz, Amanda ;
Ebos, John M. L. ;
Hlatky, Lynn ;
Hahnfeldt, Philip .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
[10]  
Berges RR, 1995, CLIN CANCER RES, V1, P473