Bidirectional shooting method for extreme nonlinear optics

被引:4
作者
Hofstrand, A. [1 ,2 ]
Jakobsen, P. [2 ,3 ]
Moloney, J., V [1 ,2 ]
机构
[1] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85721 USA
[3] Univ Tromso, Dept Math & Stat, N-9037 Tromso, Norway
关键词
FILAMENTS; AIR;
D O I
10.1103/PhysRevA.100.053818
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we introduce a pseudospectral shooting method to model intense, ultrashort optical pulses incident on remote targets. The method naturally extends the unidirectional pulse propagation equation to include backward propagating radiation due to either nonlinear coupling with the "forward" field or reflections generated at material boundaries. The general applicability of the method is highlighted with several examples, including a full simulation of a pulse propagating through air across an ultrathin gold film coated on fused silica.
引用
收藏
页数:6
相关论文
共 24 条
  • [1] Nonlinear propagation of light in structured media: Generalized unidirectional pulse propagation equations
    Andreasen, J.
    Kolesik, M.
    [J]. PHYSICAL REVIEW E, 2012, 86 (03):
  • [2] Refractive index of air: New equations for the visible and near infrared
    Ciddor, PE
    [J]. APPLIED OPTICS, 1996, 35 (09): : 1566 - 1573
  • [3] Femtosecond filamentation in transparent media
    Couairon, A.
    Mysyrowicz, A.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 441 (2-4): : 47 - 189
  • [4] Déchard J, 2017, J PHYS COMMUN, V1, DOI 10.1088/2399-6528/aa8cfe
  • [5] High-Gain Backward Lasing in Air
    Dogariu, Arthur
    Michael, James B.
    Scully, Marlan O.
    Miles, Richard B.
    [J]. SCIENCE, 2011, 331 (6016) : 442 - 445
  • [6] Canonical and Singular Propagation of Ultrashort Pulses in a Nonlinear Medium
    Glasner, Karl
    Kolesik, Miroslav
    Moloney, Jerome V.
    Newell, Alan C.
    [J]. INTERNATIONAL JOURNAL OF OPTICS, 2012, 2012
  • [7] The HITRAN2016 molecular spectroscopic database
    Gordon, I. E.
    Rothman, L. S.
    Hill, C.
    Kochanov, R. V.
    Tan, Y.
    Bernath, P. F.
    Birk, M.
    Boudon, V.
    Campargue, A.
    Chance, K. V.
    Drouin, B. J.
    Flaud, J. -M.
    Gamache, R. R.
    Hodges, J. T.
    Jacquemart, D.
    Perevalov, V. I.
    Perrin, A.
    Shine, K. P.
    Smith, M. -A. H.
    Tennyson, J.
    Toon, G. C.
    Tran, H.
    Tyuterev, V. G.
    Barbe, A.
    Csaszar, A. G.
    Devi, V. M.
    Furtenbacher, T.
    Harrison, J. J.
    Hartmann, J. -M.
    Jolly, A.
    Johnson, T. J.
    Karman, T.
    Kleiner, I.
    Kyuberis, A. A.
    Loos, J.
    Lyulin, O. M.
    Massie, S. T.
    Mikhailenko, S. N.
    Moazzen-Ahmadi, N.
    Mueller, H. S. P.
    Naumenko, O. V.
    Nikitin, A. V.
    Polyansky, O. L.
    Rey, M.
    Rotger, M.
    Sharpe, S. W.
    Sung, K.
    Starikova, E.
    Tashkun, S. A.
    Vander Auwera, J.
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 203 : 3 - 69
  • [8] Fifteen terawatt picosecond CO2 laser system
    Haberberger, D.
    Tochitsky, S.
    Joshi, C.
    [J]. OPTICS EXPRESS, 2010, 18 (17): : 17865 - 17875
  • [9] HAGEMANN HJ, 1975, J OPT SOC AM, V65, P742, DOI 10.1364/JOSA.65.000742
  • [10] Hagness S, 2005, COMPUTATIONAL ELECTR