An iterative method with variable relaxation parameters for saddle-point problems

被引:76
作者
Hu, QY [1 ]
Zou, J
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
saddle-point; inexact Uzawa method; indefinite systems; preconditioning;
D O I
10.1137/S0895479899364064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an inexact Uzawa method with variable relaxation parameters for iteratively solving linear saddle-point problems. The method involves two variable relaxation parameters, which can be updated easily in each iteration, similar to the evaluation of the two iteration parameters in the conjugate gradient method. This new algorithm has an advantage over most existing Uzawa-type algorithms: it is always convergent without any a priori estimates on the spectrum of the preconditioned Schur complement matrix, which may not be easy to achieve in applications. The rate of the convergence of the inexact Uzawa method is analyzed. Numerical results of the algorithm applied for the Stokes problem and a purely linear system of algebraic equations are presented.
引用
收藏
页码:317 / 338
页数:22
相关论文
共 19 条
[1]  
Arrow KJ., 1958, Studies in Nonlinear Programming
[2]  
AXELSSON O, 1984, NUMER ALGORITHMS, P219
[3]  
BANK RE, 1990, NUMER MATH, V56, P645, DOI 10.1007/BF01405194
[4]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092
[5]  
BRAMBLE JH, 1988, MATH COMPUT, V50, P1, DOI 10.1090/S0025-5718-1988-0917816-8
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]   On preconditioned Uzawa methods and SOR methods for saddle-point problems [J].
Chen, XJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 100 (02) :207-224
[8]   An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems [J].
Chen, ZM ;
Zou, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (03) :892-910
[9]   Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients [J].
Chen, ZM ;
Du, Q ;
Zou, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (05) :1542-1570
[10]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0