Intrinsic Bounds for Computing Precision in Memristor-Based Vector-by-Matrix Multipliers

被引:15
作者
Mahmoodi, Mohammad R. [1 ]
Vincent, Adrien F. [1 ]
Nili, Hussein [1 ]
Strukov, Dmitri B. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
ReRAM; analog computing; computing precision; vector-by-matrix multiplier; artificial neural network; CROSSBAR ARRAY; MEMORY;
D O I
10.1109/TNANO.2020.2992493
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analog computing with crossbars of memristors is a promising approach to build compact energy-efficient vector-by-matrix multiplier (VMM), a key block in many data-intensive algorithms. However, device non-linearity, process variations, interconnect parasitics, noise, and memory state drift limit the computing precision of such systems. In this article, we investigate the impact of such non-idealities in analog current-mode memristive VMMs through simulations and experiments on the most prospective passive crossbars. We show that there is an optimal tuning voltage to minimize the computation error. Furthermore, error balancing and bootstrapping are introduced as two techniques for improving the precision. It is also shown that when size of N x N crossbar is scaled up, the optimum interconnect wire conductance should increase quadratically with N to preserve the computing precision when using naive error balancing approach, and that the differential scheme is imperative for temperature insensitive operation and also to reduce the IR-drop effect.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 25 条
[11]   A Comprehensive Crossbar Array Model With Solutions for Line Resistance and Nonlinear Device Characteristics [J].
Chen, An .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (04) :1318-1326
[12]  
Guo X, 2017, INT EL DEVICES MEET
[13]  
Hu M., 2018, U.S. Patent, Patent No. [10,109,348, 10109348]
[14]   Dot-Product Engine for Neuromorphic Computing: Programming 1T1M Crossbar to Accelerate Matrix-Vector Multiplication [J].
Hu, Miao ;
Strachan, John Paul ;
Li, Zhiyong ;
Grafals, Emmanuelle M. ;
Davila, Noraica ;
Graves, Catherine ;
Lam, Sity ;
Ge, Ning ;
Yang, Jianhua ;
Williams, R. Stanley .
2016 ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2016,
[15]   Parasitic Effect Analysis in Memristor-Array-Based Neuromorphic Systems [J].
Jeong, YeonJoo ;
Zidan, Mohammed A. ;
Lu, Wei D. .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2018, 17 (01) :184-193
[16]  
Kim H., 2019, ARXIV190612045
[17]   Input Voltage Mapping Optimized for Resistive Memory-Based Deep Neural Network Hardware [J].
Kim, Taesu ;
Kim, Hyungjun ;
Kim, Jinseok ;
Kim, Jae-Joon .
IEEE ELECTRON DEVICE LETTERS, 2017, 38 (09) :1228-1231
[18]   Analogue signal and image processing with large memristor crossbars [J].
Li, Can ;
Hu, Miao ;
Li, Yunning ;
Jiang, Hao ;
Ge, Ning ;
Montgomery, Eric ;
Zhang, Jiaming ;
Song, Wenhao ;
Davila, Noraica ;
Graves, Catherine E. ;
Li, Zhiyong ;
Strachan, John Paul ;
Lin, Peng ;
Wang, Zhongrui ;
Barnell, Mark ;
Wu, Qing ;
Williams, R. Stanley ;
Yang, J. Joshua ;
Xia, Qiangfei .
NATURE ELECTRONICS, 2018, 1 (01) :52-59
[19]   Resistive RAM-Centric Computing: Design and Modeling Methodology [J].
Li, Haitong ;
Wu, Tony F. ;
Mitra, Subhasish ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (09) :2263-2273
[20]   An Ultra-Low Energy Internally Analog, Externally Digital Vector-Matrix Multiplier Based on NOR Flash Memory Technology [J].
Mahmoodi, M. Reza ;
Strukov, Dmitri .
2018 55TH ACM/ESDA/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2018,