Intrinsic Bounds for Computing Precision in Memristor-Based Vector-by-Matrix Multipliers

被引:15
作者
Mahmoodi, Mohammad R. [1 ]
Vincent, Adrien F. [1 ]
Nili, Hussein [1 ]
Strukov, Dmitri B. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
ReRAM; analog computing; computing precision; vector-by-matrix multiplier; artificial neural network; CROSSBAR ARRAY; MEMORY;
D O I
10.1109/TNANO.2020.2992493
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Analog computing with crossbars of memristors is a promising approach to build compact energy-efficient vector-by-matrix multiplier (VMM), a key block in many data-intensive algorithms. However, device non-linearity, process variations, interconnect parasitics, noise, and memory state drift limit the computing precision of such systems. In this article, we investigate the impact of such non-idealities in analog current-mode memristive VMMs through simulations and experiments on the most prospective passive crossbars. We show that there is an optimal tuning voltage to minimize the computation error. Furthermore, error balancing and bootstrapping are introduced as two techniques for improving the precision. It is also shown that when size of N x N crossbar is scaled up, the optimum interconnect wire conductance should increase quadratically with N to preserve the computing precision when using naive error balancing approach, and that the differential scheme is imperative for temperature insensitive operation and also to reduce the IR-drop effect.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 25 条
[1]  
Agarwal S, 2017, IEEE INT MEM WORKSH, P52
[2]   High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm [J].
Alibart, Fabien ;
Gao, Ligang ;
Hoskins, Brian D. ;
Strukov, Dmitri B. .
NANOTECHNOLOGY, 2012, 23 (07)
[3]  
[Anonymous], P INT S LOW POW EL D
[4]  
[Anonymous], P IEDM
[5]  
Bavandpour M., 2019, P IEEE S3S 19 SAN JO, P1
[6]  
Bavandpour M., 2018, 2018 IEEE International Electron Devices Meeting (IEDM), P20
[7]   Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits [J].
Bayat, F. Merrikh ;
Prezioso, M. ;
Chakrabarti, B. ;
Nili, H. ;
Kataeva, I. ;
Strukov, D. .
NATURE COMMUNICATIONS, 2018, 9
[8]   Phenomenological modeling of memristive devices [J].
Bayat, F. Merrikh ;
Hoskins, B. ;
Strukov, D. B. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 118 (03) :779-786
[9]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[10]  
Chakrabarti B., 2017, ICCAD-IEEE ACM INT, DOI 10.1109/ICCAD.2017.8203825