Automatic volume delineation in oncological PET Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets

被引:90
作者
Hofheinz, F. [1 ]
Poetzsch, C. [1 ]
Oehme, L. [2 ]
Beuthien-Baumann, B. [1 ,2 ]
Steinbach, J. [1 ]
Kotzerke, J. [1 ,2 ]
van den Hoff, J. [1 ,2 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, PET Zentrum, Inst Radiopharm, D-01314 Dresden, Germany
[2] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dept Nucl Med, Dresden, Germany
来源
NUKLEARMEDIZIN-NUCLEAR MEDICINE | 2012年 / 51卷 / 01期
关键词
3D ROI quantification; PET; volume delineation; background correction; interobserver variability; FDG-PET; TUMOR; SEGMENTATION; TARGET; VARIABILITY; DEFINITION; RADIOTHERAPY; F-18-FDG; CANCER; CT;
D O I
10.3413/Nukmed-0419-11-07
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Aim: Evaluation of a dedicated software tool for automatic delineation of 3D regions of interest in oncological PET. Patients, methods: The applied procedure encompasses segmentation of user-specified subvolumes within the tomographic data set into separate 3D ROIs, automatic background determination, and local adaptive thresholding of the background corrected data. Background correction and adaptive thresholding are combined in an iterative algorithm. Nine experienced observers used this algorithm for automatic delineation of a total of 37 ROIs in 14 patients. Additionally, the observers delineated the same ROIs also manually (using a freely chosen threshold for each ROI) and the results of automatic and manual ROI delineation were compared. Results: For the investigated 37 ROIs the manual delineation shows a strong interobserver variability of (26.8 +/- 6.3)% (range: 15% to 45%) while the corresponding value for automatic delineation is (1.1 +/- 1.0)% (range: <0.1% to 3.6%). The fractional deviation of the automatic volumes from the observer-averaged manual ones is (3.7 +/- 12.7)%. Conclusion: The evaluated software provides results in very good agreement with observer-averaged manual evaluations, facilitates and accelerates the volumetric evaluation, eliminates the problem of inter-observer variability and appears to be a useful tool for volumetric evaluation of oncological PET in clinical routine.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 34 条
  • [1] Apostolova I, 2010, NUKLEARMEDIZIN, V50, P83
  • [2] A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography
    Aristophanous, Michalis
    Penney, Bill C.
    Martel, Mary K.
    Pelizzari, Charles A.
    [J]. MEDICAL PHYSICS, 2007, 34 (11) : 4223 - 4235
  • [3] A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET
    Belhassen, Saoussen
    Zaidi, Habib
    [J]. MEDICAL PHYSICS, 2010, 37 (03) : 1309 - 1324
  • [4] Defining a radiotherapy target with positron emission tomography
    Black, QC
    Grills, IS
    Kestin, LL
    Wong, CYO
    Wong, JW
    Martinez, AA
    Yan, D
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 60 (04): : 1272 - 1282
  • [5] Boellaard R, 2004, J NUCL MED, V45, P1519
  • [6] Automated functional image-guided radiation treatment planning for rectal cancer
    Ciernik, IF
    Huser, M
    Burger, C
    Davis, JB
    Szekely, G
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 62 (03): : 893 - 900
  • [7] Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios:: influence of reconstruction algorithms
    Daisne, JF
    Sibomana, M
    Bol, A
    Doumont, T
    Lonneux, M
    Grégoire, V
    [J]. RADIOTHERAPY AND ONCOLOGY, 2003, 69 (03) : 247 - 250
  • [8] Comparison of CT, MRI and FDG-PET in response prediction of patients with locally advanced rectal cancer after multimodal preoperative therapy:: Is there a benefit in using functional imaging?
    Denecke, T
    Rau, B
    Hoffmann, KT
    Hildebrandt, B
    Ruf, J
    Gutberlet, M
    Hünerbein, M
    Felix, R
    Wust, P
    Amthauer, H
    [J]. EUROPEAN RADIOLOGY, 2005, 15 (08) : 1658 - 1666
  • [9] A local contrast based approach to threshold segmentation for PET target volume delineation
    Drever, Laura
    Robinson, Don M.
    McEwan, Alexander
    Roa, Wilson
    [J]. MEDICAL PHYSICS, 2006, 33 (06) : 1583 - 1594
  • [10] Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: Implications for assessment of tumor response
    Erasmus, JJ
    Gladish, GW
    Broemeling, L
    Sabloff, BS
    Truong, MT
    Herbst, RS
    Munden, RF
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (13) : 2574 - 2582