Cryogenic setup for trapped ion quantum computing

被引:59
作者
Brandl, M. F. [1 ]
van Mourik, M. W. [1 ]
Postler, L. [1 ]
Nolf, A. [1 ]
Lakhmanskiy, K. [1 ]
Paiva, R. R. [1 ,2 ]
Moller, S. [3 ]
Daniilidis, N. [3 ]
Haffner, H. [3 ]
Kaushal, V. [4 ]
Ruster, T. [4 ]
Warschburger, C. [4 ]
Kaufmann, H. [4 ]
Poschinger, U. G. [4 ]
Schmidt-Kaler, F. [4 ]
Schindler, P. [1 ]
Monz, T. [1 ]
Blatt, R. [1 ,5 ]
机构
[1] Univ Innsbruck, Inst Expt Phys, Technikerstr 25, A-6020 Innsbruck, Austria
[2] Univ Sao Paulo, Sao Carlos Phys Inst, Av Trabalhador Sao Carlense 400, Sao Carlos, SP, Brazil
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Johannes Gutenberg Univ Mainz, Inst Phys, QUANTUM, Staudingerweg 7, D-55128 Mainz, Germany
[5] Inst Quantenopt & Quanteninformat Osterrich Akad, Technikerstr 21A, A-6020 Innsbruck, Austria
关键词
STABILIZATION; COMPUTATIONS; PROPAGATION;
D O I
10.1063/1.4966970
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than +/- 20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with Ca-40(+) and Sr-88(+) ions. The instability of the laser manipulating the optical qubits in Ca-40(+) is characterized by yielding a minimum of its Allan deviation of 2.4.10(-15) at 0.33 s. To evaluate the performance of the apparatus, we trapped Ca-40(+) ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[2]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[3]   Frequency noise processes in a strontium ion optical clock [J].
Barwood, G. P. ;
Huang, G. ;
King, S. A. ;
Klein, H. A. ;
Gill, P. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2015, 48 (03)
[4]  
Brandl M. F., 2016, ARXIV160106699
[5]   Single-qubit-gate error below 10-4 in a trapped ion [J].
Brown, K. R. ;
Wilson, A. C. ;
Colombe, Y. ;
Ospelkaus, C. ;
Meier, A. M. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW A, 2011, 84 (03)
[6]   Controlled photoionization loading of 88Sr+ for precision ion-trap experiments [J].
Brownnutt, M. ;
Letchumanan, V. ;
Wilpers, G. ;
Thompson, R. C. ;
Gill, P. ;
Sinclair, A. G. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2007, 87 (03) :411-415
[7]   Ion-trap measurements of electric-field noise near surfaces [J].
Brownnutt, M. ;
Kumph, M. ;
Rabl, P. ;
Blatt, R. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (04)
[8]   Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range [J].
Chiaverini, J. ;
Sage, J. M. .
PHYSICAL REVIEW A, 2014, 89 (01)
[9]   Absolute Frequency Measurement of the 40Ca+ 4s 2S1/2-3d 2D5/2 Clock Transition [J].
Chwalla, M. ;
Benhelm, J. ;
Kim, K. ;
Kirchmair, G. ;
Monz, T. ;
Riebe, M. ;
Schindler, P. ;
Villar, A. S. ;
Haensel, W. ;
Roos, C. F. ;
Blatt, R. ;
Abgrall, M. ;
Santarelli, G. ;
Rovera, G. D. ;
Laurent, Ph. .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[10]  
Chwalla M., 2009, THESIS