Using machine learning approaches to predict response to neoadjuvant chemotherapy in patients with triple-negative breast cancer

被引:0
|
作者
Fisher, Timothy Byron
Li, Hongxiao
Ts, Rekha
Krishnamurthy, Jayashree
Bhattarai, Shristi
Janssen, Emiel A. M.
Kong, Jun
Aneja, Ritu
机构
关键词
D O I
10.1158/1538-7445.SABCS21-P1-08-16
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
P1-08-16
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Predicting Neoadjuvant Treatment Response in Triple-Negative Breast Cancer Using Machine Learning
    Bhattarai, Shristi
    Saini, Geetanjali
    Li, Hongxiao
    Seth, Gaurav
    Fisher, Timothy B.
    Janssen, Emiel A. M.
    Kiraz, Umay
    Kong, Jun
    Aneja, Ritu
    DIAGNOSTICS, 2024, 14 (01)
  • [2] Tumor Microenvironment Can Predict Chemotherapy Response of Patients with Triple-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy
    Kim, Dongjin
    Yu, Yeuni
    Jung, Ki Sun
    Kim, Yun Hak
    Kim, Jae-Joon
    CANCER RESEARCH AND TREATMENT, 2024, 56 (01): : 162 - 177
  • [3] The response to neoadjuvant chemotherapy and prognosis of triple-negative breast cancer patients.
    Nakano, E.
    Hojo, T.
    Masumura, K.
    Kikuyama, M.
    Akashi, S.
    Kinoshita, T.
    CANCER RESEARCH, 2009, 69 (02) : 337S - 337S
  • [4] Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer
    Jean Ogier du Terrail
    Armand Leopold
    Clément Joly
    Constance Béguier
    Mathieu Andreux
    Charles Maussion
    Benoît Schmauch
    Eric W. Tramel
    Etienne Bendjebbar
    Mikhail Zaslavskiy
    Gilles Wainrib
    Maud Milder
    Julie Gervasoni
    Julien Guerin
    Thierry Durand
    Alain Livartowski
    Kelvin Moutet
    Clément Gautier
    Inal Djafar
    Anne-Laure Moisson
    Camille Marini
    Mathieu Galtier
    Félix Balazard
    Rémy Dubois
    Jeverson Moreira
    Antoine Simon
    Damien Drubay
    Magali Lacroix-Triki
    Camille Franchet
    Guillaume Bataillon
    Pierre-Etienne Heudel
    Nature Medicine, 2023, 29 : 135 - 146
  • [5] Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer
    du Terrail, Jean Ogier
    Leopold, Armand
    Joly, Clement
    Beguier, Constance
    Andreux, Mathieu
    Maussion, Charles
    Schmauch, Benoit
    Tramel, Eric W.
    Bendjebbar, Etienne
    Zaslavskiy, Mikhail
    Wainrib, Gilles
    Milder, Maud
    Gervasoni, Julie
    Guerin, Julien
    Durand, Thierry
    Livartowski, Alain
    Moutet, Kelvin
    Gautier, Clement
    Djafar, Inal
    Moisson, Anne-Laure
    Marini, Camille
    Galtier, Mathieu
    Balazard, Felix
    Dubois, Remy
    Moreira, Jeverson
    Simon, Antoine
    Drubay, Damien
    Lacroix-Triki, Magali
    Franchet, Camille
    Bataillon, Guillaume
    Heudel, Pierre-Etienne
    NATURE MEDICINE, 2023, 29 (1) : 135 - 146
  • [6] Comprehensive genomic profiling can predict response to neoadjuvant chemotherapy in triple-negative breast cancer
    Drobniene, Monika
    Breimelyte, Dominyka
    Sadzeviciene, Ieva
    Sabaliauskaite, Rasa
    Valkiuniene, Ruta Barbora
    Meskauskas, Raimundas
    Dabkeviciene, Daiva
    Jarmalaite, Sonata
    BREAST, 2025, 80
  • [7] A gene signature predicts response to neoadjuvant chemotherapy in triple-negative breast cancer patients
    Zheng, Tianzhi
    Pang, Zhiyuan
    Zhao, Zhao
    BIOSCIENCE REPORTS, 2019, 39
  • [8] Response and prognosis of taxanes and anthracyclines neoadjuvant chemotherapy in patients with triple-negative breast cancer
    Wu, Jiannan
    Li, Shunrong
    Jia, Weijuan
    Su, Fengxi
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2011, 137 (10) : 1505 - 1510
  • [9] Response to Neoadjuvant Chemotherapy and Survival in Japanese Patients with Triple-Negative Breast Cancer.
    Ohtani, S.
    Kochi, M.
    Ito, M.
    Takada, S.
    Matsuura, H.
    Higaki, K.
    CANCER RESEARCH, 2011, 71
  • [10] Response and prognosis of taxanes and anthracyclines neoadjuvant chemotherapy in patients with triple-negative breast cancer
    Jiannan Wu
    Shunrong Li
    Weijuan Jia
    Fengxi Su
    Journal of Cancer Research and Clinical Oncology, 2011, 137 : 1505 - 1510