DeepSignature: fine-tuned transfer learning based signature verification system

被引:4
|
作者
Naz, Saeeda [1 ]
Bibi, Kiran [1 ]
Ahmad, Riaz [2 ]
机构
[1] Govt Girls Postgrad Coll 1 Abbottabad, Comp Sci Dept, Higher Educ Dept, Kp, Pakistan
[2] Shaheed Benazir Bhutto Univ, Comp Sci Dept, Sheringal, KP, Pakistan
关键词
Offline signature verification; Deep learning; Transfer learning; CNN; DEEP; IDENTIFICATION; FEATURES;
D O I
10.1007/s11042-022-12782-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid advancement in computer science and information technology, the demand for authentication of a person in different organizations, institutions, banks or online trading, etc. is increasing day by day. Similarly, signature verification and recognition systems are frequently used for forgery and fraud detection. Signature authentication and verification have been important bio-metric traits for many decades. In this article, Convolutional Neural Network (CNN) architectures namely AlexNet, GoogleNet, ResNet, MobileNet, and DenseNet are examined and compared. Further, a fine-tuned transfer learning-based approach is also investigated to verify and identify the offline images of signatures. The evaluation has been done using Persian signatures of different persons using the UTSig dataset as a benchmark. The experimental analyses demonstrate that DenseNet architecture outperformed the other architectures of CNN.
引用
收藏
页码:38113 / 38122
页数:10
相关论文
共 50 条
  • [1] DeepSignature: fine-tuned transfer learning based signature verification system
    Saeeda Naz
    Kiran Bibi
    Riaz Ahmad
    Multimedia Tools and Applications, 2022, 81 : 38113 - 38122
  • [2] The Diagnostics of Osteoarthritis: A Fine-Tuned Transfer Learning Approach
    Salman, Abdulaziz Abdo Saif
    Razman, Mohd Azraai Mohd
    Khairuddin, Ismail Mohd
    Abdullah, Muhammad Amirul
    Majeed, Anwar P. P. Abdul
    ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 6, 2022, 429 : 455 - 461
  • [3] Transfer learning and fine-tuned transfer learning methods' effectiveness analyse in the CNN-based deep learning models
    Ozturk, Celal
    Tasyurek, Murat
    Turkdamar, Mehmet Ugur
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (04)
  • [4] Skin Cancer Classification Using Fine-Tuned Transfer Learning of DENSENET-121
    Bello, Abayomi
    Ng, Sin-Chun
    Leung, Man-Fai
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [5] Breast Cancer Immunohistochemical Classification Network Based on Fine-Tuned Transfer Learning
    Hu, Jiangtao
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 183 - 186
  • [6] Visualized Malware Multi-Classification Framework Using Fine-Tuned CNN-Based Transfer Learning Models
    El-Shafai, Walid
    Almomani, Iman
    AlKhayer, Aala
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [7] Improved transfer learning using textural features conflation and dynamically fine-tuned layers
    Wanjiku, Raphael Ngigi
    Nderu, Lawrence
    Kimwele, Michael
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [8] Enhancing Learning in Fine-Tuned Transfer Learning for Rotating Machinery via Negative Transfer Mitigation
    Kumar, M. P. Pavan
    Tu, Zhe-Xiang
    Chen, Hsu-Chi
    Chen, Kun-Chih
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [9] A Classifier Model Using Fine-Tuned Convolutional Neural Network and Transfer Learning Approaches for Prostate Cancer Detection
    Sariates, Murat
    Ozbay, Erdal
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [10] Deep Learning Based Fine-Tuned Unet for Polyp Segmentation
    Ramanathan, A.
    Shetty, Saisha
    Garg, Naman
    Yuvarajan, Sakthi Gyanavel
    Faisal, Mohammed Abdul Wahed
    Chonko, Douglas
    10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTING AND COMMUNICATION TECHNOLOGIES, CONECCT 2024, 2024,