Optimal Power Flow Solution Using Evolutionary Computation Techniques

被引:0
|
作者
Suharto, M. N. [1 ]
Hassan, M. Y. [1 ]
Majid, M. S. [1 ]
Abdullah, M. P. [1 ]
Hussin, F. [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Ctr Elect Energy Syst, Johor Baharu 81310, Malaysia
来源
2011 IEEE REGION 10 CONFERENCE TENCON 2011 | 2011年
关键词
Optimal Power Flow; Evolutionary Computation; Genetic Algorithm; Particle Swarm Optimization; Differential Evolution; DISPATCH; NEWTON;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents evolutionary computation (EC) techniques and discusses their applicability to the optimal power flow (OPF) problem. The power flow problem is optimized to find the minimum fuel cost of all generating units while maintaining an acceptable system performance in terms of limits on the power outputs of generators, bus voltage and line flow. Different EC techniques such as genetic algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE) are applied to solve the OPF problem for IEEE 30-bus system. The results are compared with the OPF solution obtained from MATPOWER that employs sequential quadratic programming to prove the effectiveness of the EC techniques. The computational results show that EC techniques work effectively and applicable to the OPF problem.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 50 条
  • [31] Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm
    Roy, Ranjit
    Jadhav, H. T.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 64 : 562 - 578
  • [32] Real-time optimal power flow solution for wind farm integrated power system using evolutionary programming algorithm
    S. Ida Evangeline
    P. Rathika
    International Journal of Environmental Science and Technology, 2021, 18 : 1893 - 1910
  • [33] Artificial bee colony algorithm solution for optimal reactive power flow
    Ayan, Kursat
    Kilic, Ulas
    APPLIED SOFT COMPUTING, 2012, 12 (05) : 1477 - 1482
  • [34] Optimal power flow solution with stochastic wind power using the Levy coyote optimization algorithm
    Kaymaz, Enes
    Duman, Serhat
    Guvenc, Ugur
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (12) : 6775 - 6804
  • [35] A multi-objective optimal power flow using particle swarm optimization
    Hazra, J.
    Sinha, A. K.
    EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2011, 21 (01): : 1028 - 1045
  • [36] Optimal reactive power flow using multi-objective mathematical programming
    Ara, A. Lashkar
    Kazemi, A.
    Gahramani, S.
    Behshad, M.
    SCIENTIA IRANICA, 2012, 19 (06) : 1829 - 1836
  • [37] Multiobjective optimal power flow using Strength Pareto Evolutionary Algorithm
    Abido, MA
    UPEC 2004: 39TH INTERNATIONAL UNIVERSITITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, CONFERENCE PROCEEDINGS, 2005, : 457 - 461
  • [38] Optimal power flow using differential evolution algorithm
    Abou El Ela, A. A.
    Abido, M. A.
    Spea, S. R.
    ELECTRICAL ENGINEERING, 2009, 91 (02) : 69 - 78
  • [39] Optimal power flow for load margin improvement using evolutionary programming
    Aminudin, Norziana
    Rahman, Titik Khawa Abdul
    Musirin, Ismail
    2007 5TH STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT, 2007, : 62 - 67
  • [40] Optimal Search for an Optimal Power Flow Solution Using a High Density Cluster
    Amarnath, R. V.
    Ramana, N. V.
    INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2009, 4 (03): : 399 - 409