Optimal Power Flow Solution Using Evolutionary Computation Techniques

被引:0
|
作者
Suharto, M. N. [1 ]
Hassan, M. Y. [1 ]
Majid, M. S. [1 ]
Abdullah, M. P. [1 ]
Hussin, F. [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Ctr Elect Energy Syst, Johor Baharu 81310, Malaysia
来源
2011 IEEE REGION 10 CONFERENCE TENCON 2011 | 2011年
关键词
Optimal Power Flow; Evolutionary Computation; Genetic Algorithm; Particle Swarm Optimization; Differential Evolution; DISPATCH; NEWTON;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents evolutionary computation (EC) techniques and discusses their applicability to the optimal power flow (OPF) problem. The power flow problem is optimized to find the minimum fuel cost of all generating units while maintaining an acceptable system performance in terms of limits on the power outputs of generators, bus voltage and line flow. Different EC techniques such as genetic algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE) are applied to solve the OPF problem for IEEE 30-bus system. The results are compared with the OPF solution obtained from MATPOWER that employs sequential quadratic programming to prove the effectiveness of the EC techniques. The computational results show that EC techniques work effectively and applicable to the OPF problem.
引用
收藏
页码:113 / 117
页数:5
相关论文
共 50 条
  • [21] Improved evolutionary programming with various crossover techniques for optimal power flow problem
    Department of Electrical Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
    IEEJ Trans. Power Energy, 2009, 1 (67-74+7): : 67 - 74+7
  • [22] Evolutionary computation techniques for power market equilibrium determination
    Wong, K. P.
    Chung, C. Y.
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 2754 - +
  • [23] Part II: Application of Heuristic Evolutionary Programming in solution of the optimal power flow
    Shi, LB
    Xu, GY
    Hua, ZM
    POWERCON '98: 1998 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY - PROCEEDINGS, VOLS 1 AND 2, 1998, : 767 - 770
  • [24] A solution to the optimal power flow using simulated annealing
    Roa-Sepulveda, CA
    Pavez-Lazo, BJ
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2003, 25 (01) : 47 - 57
  • [25] Computation of Optimal Spacing and Density of Bus Rapid Transit Stations Using Evolutionary Algorithms
    Muhammad Umair
    Sabih ur Rehman
    Aimal Sohail
    Afaq Khattak
    Arabian Journal for Science and Engineering, 2021, 46 : 5179 - 5202
  • [26] Computation of Optimal Spacing and Density of Bus Rapid Transit Stations Using Evolutionary Algorithms
    Umair, Muhammad
    Rehman, Sabih Ur
    Sohail, Aimal
    Khattak, Afaq
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (05) : 5179 - 5202
  • [27] Multiagent based differential evolution approach to optimal power flow
    Sivasubramani, S.
    Swarup, K. S.
    APPLIED SOFT COMPUTING, 2012, 12 (02) : 735 - 740
  • [28] Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm
    Mahdad, Belkacem
    Srairi, K.
    APPLIED SOFT COMPUTING, 2016, 46 : 501 - 522
  • [29] Real-time optimal power flow solution for wind farm integrated power system using evolutionary programming algorithm
    Ida Evangeline, S.
    Rathika, P.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2021, 18 (07) : 1893 - 1910
  • [30] Solution of multi-objective optimal power flow using efficient meta-heuristic algorithm
    Reddy, S. Surender
    ELECTRICAL ENGINEERING, 2018, 100 (02) : 401 - 413