STRETCHING AND ROTATION SETS OF QUASICONFORMAL MAPPINGS

被引:3
作者
Bongers, Tyler [1 ]
机构
[1] Michigan State Univ, Dept Math, 619 Red Cedar Rd, E Lansing, MI 48824 USA
关键词
Quasiconformal mapping; Hausdorff dimension; Beltrami equation;
D O I
10.5186/aasfm.2019.4423
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasiconformal maps in the plane are orientation preserving homeomorphisms that satisfy certain distortion inequalities; infinitesimally, they map circles to ellipses of bounded eccentricity. Such maps have many useful geometric distortion properties, and yield a flexible and powerful generalization of conformal mappings. In this work, we study the singularities of these maps, in particular the sizes of the sets where a quasiconformal map can exhibit given stretching and rotation behavior. We improve results by Astala-Iwaniec-Prause-Saksman and Hitruhin to give examples of stretching and rotation sets with non-sigma-finite measure at the critical Hausdorff dimension. We also improve this to give examples with positive Riesz capacity at the critical homogeneity, as well as positivity for a broad class of gauged Hausdorff measures at that dimension.
引用
收藏
页码:103 / 123
页数:21
相关论文
共 8 条
[1]  
Adams D. R., 1996, Fundamental Principles of Mathematical Sciences, V314
[2]   QUASICONFORMAL DISTORTION OF RIESZ CAPACITIES AND HAUSDORFF MEASURES IN THE PLANE [J].
Astala, K. ;
Clop, A. ;
Tolsa, X. ;
Uriarte-Tuero, I. ;
Verdera, J. .
AMERICAN JOURNAL OF MATHEMATICS, 2013, 135 (01) :17-52
[3]  
Astala K., 2009, PRINCETON MATH SER, V48
[4]   BILIPSCHITZ AND QUASICONFORMAL ROTATION, STRETCHING AND MULTIFRACTAL SPECTRA [J].
Astala, Kari ;
Iwaniec, Tadeusz ;
Prause, Istvan ;
Saksman, Eero .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121) :113-154
[5]   ON MULTIFRACTAL SPECTRUM OF QUASICONFORMAL MAPPINGS [J].
Hitruhin, Lauri .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (02) :503-522
[6]  
Mattila P., 1995, CAMBRIDGE STUD ADV M
[7]  
Mori A., 1956, J MATH SOC JAPAN, V8, P156
[8]  
Uriarte-Tuero I., 2008, INT MATH RES NOT IMR, V14, P1