Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings

被引:127
作者
Takahashi, Wataru [1 ]
Zembayashi, Kei [1 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
关键词
D O I
10.1155/2008/528476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a strong convergence theorem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a relatively nonexpansive mapping in a Banach space by using a new hybrid method. Using this theorem, we obtain two new results for finding a solution of an equilibrium problem and a fixed point of a relatively nonexpnasive mapping in a Banach space. Copyright (c) 2008.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Alber Yal, 1996, LECT NOTES PURE APPL, V178, P15
[2]  
Blum E., 1994, MATH STUDENT, V63, P127
[3]  
Censor Y., 1996, Optimization, V37, P323, DOI 10.1080/02331939608844225
[4]  
Cioranescu I., 1990, GEOMETRY BANACH SPAC, V62
[5]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[6]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[7]  
Kamimura SJ, 2003, SIAM J OPTIMIZ, V13, P938
[8]  
KOHSAKA F, IN PRESS SIAM J OPTI
[9]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[10]   Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces [J].
Matsushita S.-Y. ;
Takahashi W. .
Fixed Point Theory and Applications, 2004 (1) :37-47