IRRATIONALITY MEASURES FOR CONTINUED FRACTIONS WITH ASYMPTOTIC CONDITIONS

被引:0
作者
Hancl, Jaroslav [1 ,2 ]
Leppala, Kalle [3 ]
机构
[1] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Dept Math, Fac Sci, 30 Dubna 22, CZ-70103 Ostrava 1, Czech Republic
[2] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Ctr Excellence IT4Innovat, Div UO, 30 Dubna 22, CZ-70103 Ostrava 1, Czech Republic
[3] Aarhus Univ, Bioinformat Res Ctr, DK-8000 Aarhus C, Denmark
基金
芬兰科学院;
关键词
continued fraction; Diophantine approximation; irrationality measure;
D O I
10.2206/kyushujm.70.205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in lower and upper bounds of asymptotic irrationality measures for certain simple continued fractions. A general procedure for estimation of real numbers by rational numbers is described. It is applied for simple continued fractions with quotients satisfying some asymptotic density conditions.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 20 条
  • [1] [Anonymous], 2006, An introduction to the theory of numbers
  • [2] BORWEIN J. M, 1987, A study in analytic number theory and computational complexity
  • [3] IRRATIONALITY MEASUREMENT FOR EA,A=0 RATIONAL OR LIOUVILLE NUMBER
    BUNDSCHUH, P
    [J]. MATHEMATISCHE ANNALEN, 1971, 192 (03) : 229 - +
  • [4] Bundschuh P., 1998, LITH MATH J, V38, p[19, 15]
  • [5] Irrationality measures for almost periodic continued fractions
    Dodulikova, Silvia
    Hancl, Jaroslav
    Kolouch, Ondrej
    Leinonen, Marko
    Leppala, Kalle
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (01) : 55 - 67
  • [6] Euler L., 1737, COMM ACAD SCI PETROP, V9, P98
  • [7] Euler L., OPERA OMNIA 1, VXIV, P186
  • [8] Fel'dman N.I., 1998, NUMBER THEORY 4, V44, P1
  • [9] SHARPENING OF BOUNDS ON CERTAIN LINEAR FORMS
    GALOCHKIN, AI
    [J]. MATHEMATICAL NOTES, 1976, 20 (1-2) : 575 - 581
  • [10] IRRATIONALITY MEASURES FOR CONTINUED FRACTIONS WITH ARITHMETIC FUNCTIONS
    Hancl, Jaroslav
    Leppala, Kalle
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 97 (111): : 139 - 148