Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility

被引:39
作者
Berger, R. L. [1 ]
Thomas, C. A. [1 ,2 ]
Baker, K. L. [1 ]
Casey, D. T. [1 ]
Goyon, C. S. [1 ]
Park, J. [1 ]
Lemos, N. [1 ]
Khan, S. F. [1 ]
Hohenberger, M. [1 ]
Milovich, J. L. [1 ]
Strozzi, D. J. [1 ]
Belyaev, M. A. [1 ]
Chapman, T. [1 ]
Langdon, A. B. [1 ]
机构
[1] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA
[2] Univ Rochester, Lab Laser Energet, 250 E River Rd, Rochester, NY 14623 USA
关键词
BRILLOUIN-SCATTERING; RAMAN; FREQUENCY; BEHAVIOR; LINERS;
D O I
10.1063/1.5079234
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The high implosion velocity, high adiabat BigFoot design [Casey et al., Phys. Plasmas 25, 056308 (2018)] has produced the highest neutron yield to date in an ignition hohlraum on the National Ignition Facility. It has used up to 500 TW of peak power and nearly 2MJ of laser energy in pulses up to 8 ns in duration, with the goal of fielding controlled implosions with high coupled energy, which can suppress deleterious hydrodynamic instabilities. However, when the laser pulse exceeds 6 ns with the laser energy greater than 1.6 MJ, stimulated Brillouin scattering (SBS) reaches levels that may damage optical components in the laser. Pending development of techniques to reduce SBS, limitation of laser power, and energy to avoid damage prevents the full exploitation of this approach to ignition. In this manuscript, we present three-dimensional simulations that match the experimentally measured SBS energy, in particular, reproducing quantitatively the time in the pulse when maximum backscatter occurs, and its magnitude across similar to 10 BigFoot experiments. The demonstrated robustness of the modeling, which combines LASNEX and pF3D simulations, motivates us to explore and recommend several feasible SBS mitigation strategies: modified laser pointing, different laser frequencies for each cone of beams, increased laser bandwidth on all or some of the cones, and materials with a mixture of light and heavy atoms lining the inside of the hohlraum walls. Published under license by AIP Publishing.
引用
收藏
页数:12
相关论文
共 36 条
[1]  
Baker K., 2015, APS M
[2]   High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility [J].
Baker, K. L. ;
Thomas, C. A. ;
Casey, D. T. ;
Khan, S. ;
Spears, B. K. ;
Nora, R. ;
Woods, T. ;
Milovich, J. L. ;
Berger, R. L. ;
Strozzi, D. ;
Clark, D. ;
Hohenberger, M. ;
Hurricane, O. A. ;
Callahan, D. A. ;
Landen, O. L. ;
Bachmann, B. ;
Benedetti, R. ;
Bionta, R. ;
Celliers, P. M. ;
Fittinghoff, D. ;
Goyon, C. ;
Grim, G. ;
Hatarik, R. ;
Izumi, N. ;
Johnson, M. Gatu ;
Kyrala, G. ;
Ma, T. ;
Millot, M. ;
Nagel, S. R. ;
Pak, A. ;
Patel, P. K. ;
Turnbull, D. ;
Volegov, P. L. ;
Yeamans, C. .
PHYSICAL REVIEW LETTERS, 2018, 121 (13)
[3]   Beyond the gain exponent: Effect of damping, scale length, and speckle length on stimulated scatter [J].
Berger, R. L. ;
Suter, L. J. ;
Divol, L. ;
London, R. A. ;
Chapman, T. ;
Froula, D. H. ;
Meezan, N. B. ;
Neumayer, P. ;
Glenzer, S. H. .
PHYSICAL REVIEW E, 2015, 91 (03)
[4]   EFFECT OF PLASMA NOISE SPECTRUM ON STIMULATED SCATTERING IN INHOMOGENEOUS-PLASMA [J].
BERGER, RL ;
WILLIAMS, EA ;
SIMON, A .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (02) :414-421
[5]   Stimulated Raman and Brillouin scattering of polarization-smoothed and temporally smoothed laser beams [J].
Berger, RL ;
Lefebvre, E ;
Langdon, AB ;
Rothenberg, JE ;
Still, CH ;
Williams, EA .
PHYSICS OF PLASMAS, 1999, 6 (04) :1043-1047
[6]   On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams [J].
Berger, RL ;
Still, CH ;
Williams, EA ;
Langdon, AB .
PHYSICS OF PLASMAS, 1998, 5 (12) :4337-4356
[7]   Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets [J].
Bhandarkar, Suhas ;
Baumann, Ted ;
Alfonso, Noel ;
Thomas, Cliff ;
Baker, Kevin ;
Moore, Alastair ;
Larson, Cindy ;
Bennett, Don ;
Sain, John ;
Nikroo, Abbas .
FUSION SCIENCE AND TECHNOLOGY, 2018, 73 (02) :194-209
[8]   The high velocity, high adiabat, "Bigfoot" campaign and tests of indirect-drive implosion scaling [J].
Casey, D. T. ;
Thomas, C. A. ;
Baker, K. L. ;
Spears, B. K. ;
Hohenberger, M. ;
Khan, S. F. ;
Nora, R. C. ;
Weber, C. R. ;
Woods, D. T. ;
Hurricane, O. A. ;
Callahan, D. A. ;
Berger, R. L. ;
Milovich, J. L. ;
Patel, P. K. ;
Ma, T. ;
Pak, A. ;
Benedetti, L. R. ;
Millot, M. ;
Jarrott, C. ;
Landen, O. L. ;
Bionta, R. M. ;
MacGowan, B. J. ;
Strozzi, D. J. ;
Stadermann, M. ;
Biener, J. ;
Nikroo, A. ;
Goyon, C. S. ;
Izumi, N. ;
Nagel, S. R. ;
Bachmann, B. ;
Volegov, P. L. ;
Fittinghoff, D. N. ;
Grim, G. P. ;
Yeamans, C. B. ;
Johnson, M. Gatu ;
Frenje, J. A. ;
Rice, N. ;
Kong, C. ;
Crippen, J. ;
Jaquez, J. ;
Kangas, K. ;
Wild, C. .
PHYSICS OF PLASMAS, 2018, 25 (05)
[9]   Investigation and modeling of optics damage in high-power laser systems caused by light backscattered in plasma at the target [J].
Chapman, T. ;
Michel, P. ;
Di Nicola, J. -M. G. ;
Berger, R. L. ;
Whitman, P. K. ;
Moody, J. D. ;
Manes, K. R. ;
Spaeth, M. L. ;
Belyaev, M. A. ;
Thomas, C. A. ;
MacGowan, B. J. .
JOURNAL OF APPLIED PHYSICS, 2019, 125 (03)
[10]   First hot electron measurements in near-ignition scale hohlraums on the National Ignition Facility [J].
Dewald, E. L. ;
Suter, L. J. ;
Thomas, C. ;
Hunter, S. ;
Meeker, D. ;
Meezan, N. ;
Glenzer, S. H. ;
Bond, E. ;
Kline, J. ;
Dixit, S. ;
Kauffman, R. L. ;
Kilkenny, J. ;
Landen, O. L. .
SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244