A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation

被引:104
作者
Ren, YJ [1 ]
Zhang, HQ
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Dalian Inst Light Ind, Dept Math & Phys, Dalian 116034, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.04.063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, a generalized F-expansion method is proposed by further studying the famous extended F-expansion method and using a generalized transformation to seek more types of solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose (2 + 1)-dimensional Nizhnik-Novikov-Veselov equations to illustrate the validity and advantages of the method. As a result, abundant new exact solutions are obtained including Jacobi Elliptic Function solutions, soliton-like solutions, trigonometric function solution etc. The method can be also applied to other nonlinear partial differential equations. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:959 / 979
页数:21
相关论文
共 23 条
[1]  
Ablowitz M. J., 1981, SOLITON INVERSE SCAT
[2]  
BOITI M, 1986, INV PROBLEMS, V2, P116
[3]   Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable [J].
Cao, CW ;
Geng, XG ;
Wang, HY .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :621-643
[4]   PARTIAL-DERIVATIVE-OVERBAR-DRESSING AND EXACT-SOLUTIONS FOR THE (2+1)-DIMENSIONAL HARRY-DYM EQUATION [J].
DUBROVSKY, VG ;
KONOPELCHENKO, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (13) :4619-4628
[5]   Darboux transformation and solutions for an equation in 2+1 dimensions [J].
Estévez, PG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) :1406-1419
[6]   New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations [J].
Fu, ZT ;
Liu, SK ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 290 (1-2) :72-76
[7]   SOLITON-SOLUTIONS OF A COUPLED KORTEWEG-DEVRIES EQUATION [J].
HIROTA, R ;
SATSUMA, J .
PHYSICS LETTERS A, 1981, 85 (8-9) :407-408
[8]   Soliton solutions and doubly periodic wave solutions for a new generalized Hirota-Satsuma coupled system [J].
Hon, YC ;
Fan, E .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) :813-827
[9]   NONLINEAR SUPERPOSITION FORMULA OF THE NOVIKOV-VESELOV EQUATION [J].
HU, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04) :1331-1338
[10]   SIMPLE DERIVATION OF BACKLUND TRANSFORMATION FROM RICCATI FORM OF INVERSE METHOD [J].
KONNO, K ;
WADATI, M .
PROGRESS OF THEORETICAL PHYSICS, 1975, 53 (06) :1652-1656