Chromosome-level genome assembly of the greenhouse whitefly (Trialeurodes vaporariorum Westwood)

被引:25
作者
Xie, Wen [1 ,2 ]
He, Chao [1 ]
Fei, Zhangjun [2 ,3 ]
Zhang, Youjun [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Vegetables & Flowers, Dept Plant Protect, Beijing, Peoples R China
[2] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA
[3] ARS, USDA, Robert W Holley Ctr Agr & Hlth, Ithaca, NY USA
基金
中国国家自然科学基金;
关键词
cytochrome P450; greenhouse whitefly; genome assembly; Trialeurodes vaporariorum; BEMISIA-TABACI HEMIPTERA; DE-NOVO IDENTIFICATION; HI-C; INSECTICIDE RESISTANCE; GENE; FAMILIES; ANNOTATION; EXPRESSION; EVOLUTION; VITELLOGENIN;
D O I
10.1111/1755-0998.13159
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is an agricultural pest of global importance. Here we report a 787-Mb high-quality draft genome sequence of T. vaporariorum assembled from PacBio long reads and Hi-C chromatin interaction maps, which has scaffold and contig N50 lengths of 70 Mb and 500 kb, respectively, and contains 18,275 protein-coding genes. About 98.8% of the assembled contigs were placed onto the 11 T. vaporariorum chromosomes. Comparative genomic analysis reveals significantly expanded gene families such as aspartyl proteases in T. vaporariorum compared to Bemisia tabaci Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1). Furthermore, the cytochrome CYP6 subfamily shows significant expansion in T. vaporariorum and several genes in this subfamily display developmental stage-specific expression patterns. The high-quality T. vaporariorum genome provides a valuable resource for research in a broad range of areas such as fundamental molecular ecology, insect-plant/insect-microorganism or virus interactions and pest resistance management.
引用
收藏
页码:995 / 1006
页数:12
相关论文
共 63 条
[1]  
[Anonymous], NUCLEIC ACIDS RES
[2]   Repbase Update, a database of repetitive elements in eukaryotic genomes [J].
Bao, Weidong ;
Kojima, Kenji K. ;
Kohany, Oleksiy .
MOBILE DNA, 2015, 6
[3]   Automated de novo identification of repeat sequence families in sequenced genomes [J].
Bao, ZR ;
Eddy, SR .
GENOME RESEARCH, 2002, 12 (08) :1269-1276
[4]   Hi-C: A comprehensive technique to capture the conformation of genomes [J].
Belton, Jon-Matthew ;
McCord, Rachel Patton ;
Gibcus, Johan Harmen ;
Naumova, Natalia ;
Zhan, Ye ;
Dekker, Job .
METHODS, 2012, 58 (03) :268-276
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Tandem repeats finder: a program to analyze DNA sequences [J].
Benson, G .
NUCLEIC ACIDS RESEARCH, 1999, 27 (02) :573-580
[7]   Paleontological evidence to date the tree of life [J].
Benton, Michael J. ;
Donoghue, Philip C. J. .
MOLECULAR BIOLOGY AND EVOLUTION, 2007, 24 (01) :26-53
[8]   The karyotype of Bemisia tabaci (Hemiptera: Aleyrodidae) [J].
Blackman, RL ;
Cahill, M .
BULLETIN OF ENTOMOLOGICAL RESEARCH, 1998, 88 (02) :213-215
[9]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[10]   BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis [J].
Bouckaert, Remco ;
Vaughan, Timothy G. ;
Barido-Sottani, Joelle ;
Duchene, Sebastian ;
Fourment, Mathieu ;
Gavryushkina, Alexandra ;
Heled, Joseph ;
Jones, Graham ;
Kuehnert, Denise ;
De Maio, Nicola ;
Matschiner, Michael ;
Mendes, Fabio K. ;
Mueller, Nicola F. ;
Ogilvie, Huw A. ;
du Plessis, Louis ;
Popinga, Alex ;
Rambaut, Andrew ;
Rasmussen, David ;
Siveroni, Igor ;
Suchard, Marc A. ;
Wu, Chieh-Hsi ;
Xie, Dong ;
Zhang, Chi ;
Stadler, Tanja ;
Drummond, Alexei J. .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)